# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """CSMD: a dataset for assessing meaning preservation between sentences""" import csv import datasets from datasets import load_dataset _CITATION = """\ @ARTICLE{10.3389/frai.2023.1223924, AUTHOR={Beauchemin, David and Saggion, Horacio and Khoury, Richard}, TITLE={{MeaningBERT: Assessing Meaning Preservation Between Sentences}}, JOURNAL={Frontiers in Artificial Intelligence}, VOLUME={6}, YEAR={2023}, URL={https://www.frontiersin.org/articles/10.3389/frai.2023.1223924}, DOI={10.3389/frai.2023.1223924}, ISSN={2624-8212}, } """ _DESCRIPTION = """\ Continuous Scale Meaning Dataset (CSMD) is a dataset for assessing meaning preservation between sentences. """ _HOMEPAGE = "https://github.com/GRAAL-Research/csmd" _LICENSE = "Attribution 4.0 International (CC BY 4.0)" _URL_LIST = [ ( "meaning.train", "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/train.tsv", ), ( "meaning.dev", "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/dev.tsv", ), ( "meaning.test", "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/test.tsv", ), ( "meaning_with_data_augmentation.train", "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/train.tsv", ), ( "meaning_with_data_augmentation.dev", "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/dev.tsv", ), ( "meaning_with_data_augmentation.test", "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/test.tsv", ), ( "identical", "https://github.com/GRAAL-Research/csmd/blob/main/dataset/holdout/identical.tsv", ), ( "unrelated", "https://github.com/GRAAL-Research/csmd/blob/main/dataset/holdout/unrelated.tsv", ), ] _URLs = dict(_URL_LIST) class CSMD(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("2.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="meaning", version=VERSION, description="An instance consists of 1,355 meaning preservation triplets (Document, simplification, " "label).", ), datasets.BuilderConfig( name="meaning_with_data_augmentation", version=VERSION, description="An instance consists of 1,355 meaning preservation triplets (Document, simplification, label) " "along with 1,355 data augmentation triplets (Document, Document, 1) and 1,355 data " "augmentation triplets (Document, Unrelated Document, 0) (See the sanity checks in our " "article).", ), datasets.BuilderConfig( name="meaning_holdout_identical", version=VERSION, description="An instance consists of 359 meaning holdout preservation identical triplets (Document, " "Document, 1) based on the ASSET Simplification dataset.", ), datasets.BuilderConfig( name="meaning_holdout_unrelated", version=VERSION, description="An instance consists of 359 meaning holdout preservation unrelated triplets (Document, " "Unrelated Document, 0) based on the ASSET Simplification dataset.", ), ] DEFAULT_CONFIG_NAME = "meaning" def _info(self): features = datasets.Features( { "document": datasets.Value(dtype="string"), "simplification": datasets.Value(dtype="string"), "labels": datasets.Value(dtype="string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URLs) if self.config.name in ("meaning", "meaning_with_data_augmentation"): return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepaths": data_dir, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepaths": data_dir, "split": "valid", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepaths": data_dir, "split": "test"}, ), ] elif self.config.name in ("identical", "unrelated"): return [ datasets.SplitGenerator( name=f"{self.config.name}_{datasets.Split.TEST}", gen_kwargs={ "filepaths": data_dir, "split": "test", }, ), ] def _generate_examples(self, filepaths, split): with open(filepaths[split], encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t") for id_, row in enumerate(reader): if id_ == 0: # Columns header keys = row[:] else: res = dict([(k, v) for k, v in zip(keys, row)]) for k in ["document", "simplification", "labels"]: res[k] = int(res[k]) yield ( id_ - 1 ), res # Minus 1, since first idx is the columns header