id
stringlengths
53
86
api_name
stringlengths
2
76
api_description
stringlengths
1
500
api_score
float64
0
10
endpoint_name
stringlengths
1
190
endpoint_description
stringlengths
0
500
response_status_code
int64
100
505
response_summary
stringlengths
1
68
response_json
stringlengths
6
50k
response_json_schema
stringlengths
14
150k
f45f3739-0bc8-47fd-bd00-ecad84d2e5c4/8b80399e-47d7-436e-a8f8-ec58c4bf2218/2/0
Masks detection
High-accuracy solution for medical masks detection. This solution analyzes a given image, detects people in it and reports if they wear protective masks or not. [](https://api4.ai/apis/mask-detection?utm_source=med_mask_rapidapi&utm_medium=endpoints&utm_campaign=rap...
8.3
Analyse image and return results
Performs actual image analysis and responds with results. Image must be a regular JPEG or PNG image (with or without transparency) or PDF file. Usually such images have extensions: .jpg, .jpeg, .png, .pdf. In case of PDF each page will be converted to PNG image and processed separately. The service checks input file by MIME type and accepts the following types: image/jpeg image/png application/pdf The size of image file must be less than 16Mb.
422
Missing image/url
{"detail": "Missing image or url field."}
{"type": "object", "properties": {"detail": {"type": "string"}}}
a5879bf8-a6e9-4f26-99e8-e37c5e680e18/4fa1cc86-9dbc-4970-9842-6734b69dddfa/0/0
General Detection
This ready-to-use API offers high-accuracy detection of different types of objects, framing them with bounding boxes and predicting their class. ...
9.1
Analyse image and return results
Performs actual image analysis and responds with results. Image must be a regular JPEG or PNG image (with or without transparency) or PDF file. Usually such images have extensions: .jpg, .jpeg, .png, .pdf. In case of PDF each page will be converted to PNG image and processed separately. The service checks input file by MIME type and accepts the following types: image/jpeg image/png application/pdf The size of image file must be less than 16Mb.
422
Missing image/url
{"detail": "Missing image or url field."}
{"type": "object", "properties": {"detail": {"type": "string"}}}
a5879bf8-a6e9-4f26-99e8-e37c5e680e18/4fa1cc86-9dbc-4970-9842-6734b69dddfa/2/0
General Detection
This ready-to-use API offers high-accuracy detection of different types of objects, framing them with bounding boxes and predicting their class. ...
9.1
Analyse image and return results
Performs actual image analysis and responds with results. Image must be a regular JPEG or PNG image (with or without transparency) or PDF file. Usually such images have extensions: .jpg, .jpeg, .png, .pdf. In case of PDF each page will be converted to PNG image and processed separately. The service checks input file by MIME type and accepts the following types: image/jpeg image/png application/pdf The size of image file must be less than 16Mb.
200
Successul detection
{"results": [{"status": {"code": "ok", "message": "Success"}, "name": "image.jpg", "md5": "a447c0aa2b2b89aa6ffb488317c0ab1e", "width": 1024, "height": 768, "entities": [{"kind": "objects", "name": "general-object-detector", "objects": [{"box": [0.26268550753593445, 0.046176016330718994, 0.6867486536502838, 0.6496018171310425], "entities": [{"kind": "classes", "name": "classes", "classes": {"racket": 0.6910336017608643}}]}]}]}]}
{"type": "object", "properties": {"results": {"type": "array", "items": {"type": "object", "properties": {"status": {"type": "object", "properties": {"code": {"type": "string"}, "message": {"type": "string"}}}, "name": {"type": "string"}, "md5": {"type": "string"}, "entities": {"type": "array", "items": {"type": "object", "properties": {"kind": {"type": "string"}, "name": {"type": "string"}, "objects": {"type": "array", "items": {"type": "object", "properties": {"box": {"type": "array", "items": {"type": "number"}}, "entities": {"type": "array", "items": {"type": "object", "properties": {"kind": {"type": "string"}, "name": {"type": "string"}, "classes": {"type": "object"}}}}}}}}}}}}}}}
a5879bf8-a6e9-4f26-99e8-e37c5e680e18/4fa1cc86-9dbc-4970-9842-6734b69dddfa/2/1
General Detection
This ready-to-use API offers high-accuracy detection of different types of objects, framing them with bounding boxes and predicting their class. ...
9.1
Analyse image and return results
Performs actual image analysis and responds with results. Image must be a regular JPEG or PNG image (with or without transparency) or PDF file. Usually such images have extensions: .jpg, .jpeg, .png, .pdf. In case of PDF each page will be converted to PNG image and processed separately. The service checks input file by MIME type and accepts the following types: image/jpeg image/png application/pdf The size of image file must be less than 16Mb.
200
Unsupported media type
{"results": [{"status": {"code": "failure", "message": "Unsupported media type. Expected one of ['image/jpeg', 'image/png']. Got 'text/plain'."}, "name": "file.txt", "md5": "d41d8cd98f00b204e9800998ecf8427e", "entities": []}]}
{"type": "object", "properties": {"results": {"type": "array", "items": {"type": "object", "properties": {"status": {"type": "object", "properties": {"code": {"type": "string"}, "message": {"type": "string"}}}, "name": {"type": "string"}, "md5": {"type": "string"}, "entities": {"type": "array", "items": {"type": "object", "properties": {"kind": {"type": "string"}, "name": {"type": "string"}, "objects": {"type": "array", "items": {"type": "object", "properties": {"box": {"type": "array", "items": {"type": "number"}}, "entities": {"type": "array", "items": {"type": "object", "properties": {"kind": {"type": "string"}, "name": {"type": "string"}, "classes": {"type": "object"}}}}}}}}}}}}}}}
a5879bf8-a6e9-4f26-99e8-e37c5e680e18/871986d0-dbd5-4eef-b86a-28903a228c6e/0/0
General Detection
This ready-to-use API offers high-accuracy detection of different types of objects, framing them with bounding boxes and predicting their class. ...
9.1
Get list of algorithms
Service provides alternative algorithms that may be used for image detection. The idea behind multiple algorithms is to let client try different algorithms to get the best one that matches client's use case.
200
Get list of algorithms
["algo1", "algo2"]
{"type": "array", "items": {"type": "string"}}
146d552e-1446-45fe-abc7-7b66502d7a1b/23b2693b-70b1-45d8-a84b-547004d68c8d/0/0
Logo Recognition
Logo & brand recognition API is a combination of logo detection and logo recognition technologies. The API first detects any part of the image that looks like a logo. As a second step, it compares all detected logos to existing logo samples in an internal database, thus returning the name of the brand, if it finds a match.
7.7
Logo recognition from image (url)
For more details contact us
200
Response
[{"coordinate": [314, 242, 933, 399], "possible_brands": []}]
{"$schema": "http://json-schema.org/schema#", "type": "array", "items": {"type": "object", "properties": {"coordinate": {"type": "array", "items": {"type": "integer"}}, "possible_brands": {"type": "array"}}, "required": ["coordinate", "possible_brands"]}}
4ae17a14-48bf-4303-b74a-edba856bbddd/a481b07f-c1b3-4da6-acb3-27f63a9c6515/0/0
Identity Verification From ID
Quickly check whether a user's face and name match what's on their government-issued ID (driver's license, passport, etc.)
null
verify-identity
Verify the identity of the person from their government issued ID, a picture of themselves and their full name.
200
New Example
{"success": "true", "message": "Identity verified!"}
{"type": "object", "properties": {"success": {"type": "string"}, "message": {"type": "string"}}}
cb5a120d-2611-413b-a0f3-f22a8eff7a2f/a4750cbf-ae70-474f-84d2-ad7f6e96f4ba/0/0
Macau ID Card OCR
Extracted from the Macao Identity Card, including last name, first name, English name, date of birth and ID number on the back, date of first issue, etc.
6.3
Macau ID Card OCR
Support jpg, png, bmp, pdf, tiff, single-frame gif and other formats, the image size does not exceed 10M.
200
Response
{"code": "200", "status": "SUCCESS", "date": "11/22/2023 01:24:49 AM", "result": {"rotated_image_height": 609, "image_angle": 0, "rotated_image_width": 480, "item_list": [{"value": "Macau ID Front", "key": "id_type"}, {"value": "\u90ed", "position": {"bottom": 44, "left": 23, "right": 145, "top": 17}, "key": "lastname"}, {"value": "\u660c\u660e", "key": "firstname"}, {"value": "KUOK,CHEONG MENG RICARDO", "position": {"bottom": 76, "left": 24, "right": 260, "top": 59}, "key": "english_name"}, {"value": "KUOK", "position": {"bottom": 76, "left": 24, "right": 260, "top": 59}, "key": "family_name"}, {"value": "CHEONG MENG RICARDO", "position": {"bottom": 76, "left": 24, "right": 260, "top": 59}, "key": "given_name"}, {"value": "6753 2490 2494", "position": {"bottom": 58, "left": 24, "right": 140, "top": 43}, "key": "code"}, {"value": "5215299(8)", "position": {"bottom": 285, "left": 320, "right": 455, "top": 264}, "key": "id_number"}, {"value": "52152998", "key": "id_number_back"}, {"value": "03-12-1960", "position": {"bottom": 203, "left": 25, "right": 131, "top": 184}, "key": "birth"}, {"value": "15-12-1981", "position": {"bottom": 257, "left": 158, "right": 265, "top": 238}, "key": "first_issued"}, {"value": "18-12-2002", "position": {"bottom": 287, "left": 141, "right": 280, "top": 266}, "key": "issued"}, {"value": "18-12-2012", "position": {"bottom": 257, "left": 26, "right": 134, "top": 238}, "key": "validate_date"}, {"value": "1,80", "position": {"bottom": 225, "left": 28, "right": 70, "top": 203}, "key": "height"}, {"value": "M", "position": {"bottom": 209, "left": 347, "right": 381, "top": 192}, "key": "sex"}], "type": "macau_id_card"}}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"code": {"type": "string"}, "status": {"type": "string"}, "date": {"type": "string"}, "result": {"type": "object", "properties": {"rotated_image_height": {"type": "integer"}, "image_angle": {"type": "integer"}, "rotated_image_width": {"type": "integer"}, "item_list": {"type": "array", "items": {"type": "object", "properties": {"value": {"type": "string"}, "key": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["key", "value"]}}, "type": {"type": "string"}}, "required": ["image_angle", "item_list", "rotated_image_height", "rotated_image_width", "type"]}}, "required": ["code", "date", "result", "status"]}
f1b055c3-6856-4f42-ba7d-83c6e71b66bf/082fda1e-21c7-4005-8393-c1e9cdbfee63/0/0
NSFW Classifier
Content Moderation API for classifying nudity/adult/18+ contents
0.1
classify_image_post
Classifying images from (.png / .jpg / .jpeg) files
422
Example_1
{"detail": [{"loc": [], "msg": "", "type": ""}]}
{"title": "HTTPValidationError", "type": "object", "properties": {"detail": {"title": "Detail", "type": "array", "items": {"title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": {"loc": {"title": "Location", "type": "array", "items": {"type": "string"}}, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}}}}}}
f1b055c3-6856-4f42-ba7d-83c6e71b66bf/bb0258da-1fea-4618-bcf1-c21b935272d6/0/0
NSFW Classifier
Content Moderation API for classifying nudity/adult/18+ contents
0.1
classify_url__url__post
Classifying image from URL
422
Example_1
{"detail": [{"loc": [], "msg": "", "type": ""}]}
{"title": "HTTPValidationError", "type": "object", "properties": {"detail": {"title": "Detail", "type": "array", "items": {"title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": {"loc": {"title": "Location", "type": "array", "items": {"type": "string"}}, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}}}}}}
f1b055c3-6856-4f42-ba7d-83c6e71b66bf/bb0258da-1fea-4618-bcf1-c21b935272d6/1/0
NSFW Classifier
Content Moderation API for classifying nudity/adult/18+ contents
0.1
classify_url__url__post
Classifying image from URL
200
Response
{"safe": 0.2469814270734787, "unsafe": 0.7530185580253601}
{"type": "object", "properties": {"safe": {"type": "number"}, "unsafe": {"type": "number"}}}
ac4b327c-4707-47d1-bfc2-4635dea3393c/e18c9bb2-251e-4188-afd1-d3bfd609b9ee/0/0
Promity Age and Gender Recognition
API for age and gender recognition
8.5
Age and gender by URL
Endpoint for age and gender prediction. Send us link to image, we return position of detected faces and predicted age and gender. Check out our tutorials for example of usage in Python.
200
New Example
{"detections": [{"crop": {"x1": 0.49029475450515747, "y1": 0.5199255347251892, "x2": 0.5589765906333923, "y2": 0.38276559114456177, "score": 0.9992923736572266}, "age": 23, "gender": {"F": 0.999700665473938, "M": 0.0002993345260620117}}, {"crop": {"x1": 0.11643223464488983, "y1": 0.5169875025749207, "x2": 0.1809975504875183, "y2": 0.39529597759246826, "score": 0.998594343662262}, "age": 22, "gender": {"F": 0.002291440963745117, "M": 0.9977085590362549}}, {"crop": {"x1": 0.8563294410705566, "y1": 0.24784332513809204, "x2": 0.917901873588562, "y2": 0.12237813323736191, "score": 0.9980091452598572}, "age": 33, "gender": {"F": 0.9146032929420471, "M": 0.08539670705795288}}, {"crop": {"x1": 0.1482899785041809, "y1": 0.3003842234611511, "x2": 0.20176897943019867, "y2": 0.20043990015983582, "score": 0.9973342418670654}, "age": 19, "gender": {"F": 0.9946532249450684, "M": 0.005346775054931641}}, {"crop": {"x1": 0.598613440990448, "y1": 0.3124071955680847, "x2": 0.6528789401054382, "y2": 0.20392273366451263, "score": 0.9954931735992432}, "age": 24, "gender": {"F": 0.005447328090667725, "M": 0.9945526719093323}}, {"crop": {"x1": 0.7280519008636475, "y1": 0.5563205480575562, "x2": 0.7874197363853455, "y2": 0.4102036952972412, "score": 0.7963488101959229}, "age": 39, "gender": {"F": 0.8345146179199219, "M": 0.16548538208007812}}]}
{"type": "object", "properties": {"detections": {"type": "array", "items": {"type": "object", "properties": {"crop": {"type": "object", "properties": {"x1": {"type": "number"}, "y1": {"type": "number"}, "x2": {"type": "number"}, "y2": {"type": "number"}, "score": {"type": "number"}}}, "age": {"type": "integer"}, "gender": {"type": "object", "properties": {"F": {"type": "number"}, "M": {"type": "number"}}}}}}}}
ac4b327c-4707-47d1-bfc2-4635dea3393c/925570e0-7f54-4ccd-90cc-dfa6270e3256/0/0
Promity Age and Gender Recognition
API for age and gender recognition
8.5
Age and gender by file
Endpoint for age and gender prediction. Send us image, we return position of detected faces and predicted age and gender. Check out our tutorials for example of usage in Python.
200
New Example
{"detections": [{"crop": {"x1": 0.49029475450515747, "y1": 0.5199255347251892, "x2": 0.5589765906333923, "y2": 0.38276559114456177, "score": 0.9992923736572266}, "age": 23, "gender": {"F": 0.999700665473938, "M": 0.0002993345260620117}}, {"crop": {"x1": 0.11643223464488983, "y1": 0.5169875025749207, "x2": 0.1809975504875183, "y2": 0.39529597759246826, "score": 0.998594343662262}, "age": 22, "gender": {"F": 0.002291440963745117, "M": 0.9977085590362549}}, {"crop": {"x1": 0.8563294410705566, "y1": 0.24784332513809204, "x2": 0.917901873588562, "y2": 0.12237813323736191, "score": 0.9980091452598572}, "age": 33, "gender": {"F": 0.9146032929420471, "M": 0.08539670705795288}}, {"crop": {"x1": 0.1482899785041809, "y1": 0.3003842234611511, "x2": 0.20176897943019867, "y2": 0.20043990015983582, "score": 0.9973342418670654}, "age": 19, "gender": {"F": 0.9946532249450684, "M": 0.005346775054931641}}, {"crop": {"x1": 0.598613440990448, "y1": 0.3124071955680847, "x2": 0.6528789401054382, "y2": 0.20392273366451263, "score": 0.9954931735992432}, "age": 24, "gender": {"F": 0.005447328090667725, "M": 0.9945526719093323}}, {"crop": {"x1": 0.7280519008636475, "y1": 0.5563205480575562, "x2": 0.7874197363853455, "y2": 0.4102036952972412, "score": 0.7963488101959229}, "age": 39, "gender": {"F": 0.8345146179199219, "M": 0.16548538208007812}}]}
{"type": "object", "properties": {"detections": {"type": "array", "items": {"type": "object", "properties": {"crop": {"type": "object", "properties": {"x1": {"type": "number"}, "y1": {"type": "number"}, "x2": {"type": "number"}, "y2": {"type": "number"}, "score": {"type": "number"}}}, "age": {"type": "integer"}, "gender": {"type": "object", "properties": {"F": {"type": "number"}, "M": {"type": "number"}}}}}}}}
c4a988df-a0ae-49bd-a542-02160c14f1de/5a3af898-e246-4ebd-880e-cab3050c9a8b/0/0
India AadHaar ID Card OCR
Extract all key fields from India AadHaar ID including AadHaar number, name, year of birth, gender and head portrait.
5.9
India AadHaar ID Card OCR
Support jpg, png, bmp, pdf, tiff, single-frame gif and other formats, the image size does not exceed 10M.
200
Response
{"code": "200", "status": "SUCCESS", "date": "11/23/2023 01:30:09 AM", "result": {"rotated_image_height": 272, "image_angle": 0, "rotated_image_width": 435, "type": "india_id_card", "details": {"birthday": {"value": ""}, "head_portrait": {"value": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAB3AF0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7StPgX8bP7Vn082k7WsjbnZ+4Hal034M/FBtVupl0a9htguGI++5HYe1fT9tr3gOTUVjt9cBdpWjCibpjrSR654CKzzQ+JZXHllv3knIUnqPbivzj6viv+fp+qLijFw0jSPk+/wDhd8d0drm18OXzIJNsPy5Y81QufAfx/t7NLpvDNysSsVXEXOR8p4+tfWOueMvhf4W8J6lrGr+PYLOzsrYzXF5c3yqkIYYzn19MV+IH/BUX/gqN8ffHfxZT4cfDL4tXWiaf4d1K9uLW+0W9Mf263lihMAmH95XRh7qxNdmEwmMnL3ZmM+IK8/eqQsffWu3fxO8J6zpug+IkktbrWDLFpltOwT7TJGNzxqT1YDtXQ6FY/Ei08QW8WsaS/mFlleEcNGp7sCa/EK7/AOCon7ZN9ItrrXxlur6VZnkj+1KJPIkcfM8JP+ryowSDmu08L/8ABWf9ovWLnw+3xY8U3mpXeh3yJa65aTtHdCIcCN2BAcY7MD9a7vqePjrzCocQ0XUsz9xdWuYNPknvb63aGNFL4cY4AyT71n+EvFfhrxnpKa54X1aK8tmYx+dE4IDA8g/pX5333/BXvX/iw7fD/TZFidNOa3juWiaV7hiNjMy9mCt1HpWR+yT+2l4p/Zq03Vvhjr+r2+uWNrfJfxXjy/vGgbCSqT0+U4PrxXpYfE4n2dqm59RDFYSqk1LRn6iWkybcFl47E1LHcrCSqsMH0rxP4M/tX+BPjH8Vdb+F/gyOe6/sLR7bUZtRGGhdZXwsYI79a9bjuRIzlHLEsT8y4H0FdcMUvtHX7CjKlzU9jds7623CUuNyngCvyy/4KE/AL40/EX/gol8QvFfhHS9MmsZPCvhONTd+IbS1YN/Zgkb5JZFJGZeoGD69a/TixnkV1famQ3Ar8V/+C/GpXWh/8FGZ7o+Ysd18L/C/lmFiM7LR1OcemK7MFUhObPg+N8OqVGnI/cu20DQ7fxT5MWshZ/MnKps9RXnH7S/xa+Gv7M/wl1v4j+MPEEy29rp3kERRM5Uk8ZA6Zr3U+LfCF/4iS5fwTdR3UTHEqwcGuV+NOp/BbxP8PPEaeOfh0L6wlsJvt9tfWgaKRQpPI7EGvzzDubqe8LnlD7J+H/7WH/BSaT41fDfVtBt9asNRs73UwJbCZHjkt4lVgske0/N15z618FfFPxPeaxNbSnVLi5YQrFFM4O5IxnALd/T2rd+KWr6RefFjxMPDWjwadpw166TTrSLhYohKQoHfGB3rd+C37Mfxb/aCvli8F+GJrm2bIeYx7Yxz1B719nSeHy+h7aqeNNYrNa3scNE8eh1W9a4iw7YJAP4VpXWuXc1izIWGyVXJ/wB2vtTwt/wRj+M+rypb21rHFvQESyL90967u0/4IFfEmaPzp/EMaOAC8f8ACTXHX4qyeDOulwVndRc/wnwZ4N+IF5pvib+1YdQnt5pYCYZkcgowHWtBvif4mv3kvoNYuBdujpdeXOR5q+h+tfV/j/8A4IpftAeErZ7zTbmzuCr7Ywic7a8N+Pn7Cvxa/Z50QeKPFelFLORwk06H5UB6qfrSpcQ5HiZWpz94upkPEODp/wBw/QD/AIN/PEHiPxHqPxE1fWuYorfTokYnJIVXP4dOnev0ujnUbY3PIQEsP7x6iviv/gkV8M/gx+zl+xlp3jbVvilYSa94y1OKW/tWuFEiGRhHCn3uhAr7Jkt3S5ljIYNHMVK7sgYx0PuDXPVxEKlTmR+kZPGE8sglL3rGnDNBGPv5JPA/GvxU/wCDiuTUbP8Abo0a8jvV8u4+GmjbBs6bEdT/ACr9nrdGZ8qGJ8wACvxp/wCDjq9EH7XvhAfYmkJ+HFn830mmX/2U16GU1eeq0fJ8fQthKZ/Qc4U3PlR+J4N+98LkfLWR4tsbnUNLukv/ABDp7qbSfYCgKqfLO1nHoarxnRI9Tilm8DT+YXb/AEkOcVejtNBW9G7wjcYuFKyb/u7MV8bB/vTzqsZ2P5LfGrTeJvjf4nvrx1keXxbqBDpHtQ/6S4yq9kx2r9jP2C/htp+h/CjwzHaafBA01kkkwRNoJx/FX5NfGXwxJ4S/bf8AiD8PpNMe0Wy+KGrWsVnIvzwg30oVD/s1+xXw18b+D/hb4M0z+1dUisjHbwW5S4DJgKn/AMUtVxdPFzwcY0j2uBadOjXruofWHhfwVaf2fDcxQIhGQSq1uQ6BDDCcpuAPBryXwd+1v+z7b6bb6Rqvxt8Pw3jt8sD6igLV67pGr+HdV8Otr9t4ktLix+zect5aXKuhT13LX5lLBYif2ZH1letUlPmjIwvE3hHTJ7RvNlG5hwpPevkr9uL4Op4z+D2u+FZrJZlmtnZCV3AfKenvXb/G7/gpp+yf8LtZOg614pnu2Tchm0+IzhWB5zhq+fNf/wCCoPwC8Z6u/huTUby3s9SBjtpriwdGKk4yqH52zjtXfg8uzPD14VYw0NP7Rw6oOnV6o/KTXfHnxK8E6lb+EZNfurW30uVVskt5SBG8bkK+PUHBx7V+9X/BLz9oLVP2mP2HPAnxU8X6gLjXG06Sw12VOslxbTNCJW93jERr8RP2uvBVz4T+L+rm2tv+JbfXYubN5IyhVJMYBVvmBOc81+pf/Bv5e6na/sKPZaimLWLxZfLp0g/5aR5Qkfg2a/XsfKnLK6dVR5ZHwfDuMqYTN61Jy5qfQ+4PEepx2en+Za3HlMJE+b15r8X/APg45luLv9pv4c6kl1gXPwwRhz126nfR5/8AHK/Zm9H9qRtbQ27ERuHLFOgHNfjR/wAHOVtLp/x7+Dk1opIm+Ft2GIHdfEOqr/LFc/D+InPGSiYccYmGJhTcZH792lxfC6ib/hZsAGcLalBkkrV+O51dZiz/ABNtpk2MGhOPk+WuaS802HVIo3+FEzyIExeKCw+794VowahYrqKxyfC25jcHP2kwDDV4PUmrG5+Af/BcP9n3xT8JP+ConiXx/wCGrEXWm+I2tPEUV7attWaSdYo5dzf9d423f77VmeKdT8W+MvjVpWofGf4fa7beGII4rW58L6DeP+9vDEnyMzN/F96v1U/4K/fA7wl8VP2bdS8Z6X8OW0zW9IspHtNQngHMcU0dwIm9mER/76r5p034Sax410PTPGXhzw1FrSMLGXUbFJ1ScTQeY0c8bN8u794y/wC1ha1xWbqlQ5ZxPeyPIac/30ZHH+E/gN4H8QWPiRtH/Zd03wpHoeko2k3VzqLXX9ryP3jZd21l/i3bax9I/Z0+LviDxJrfgz4Y+P5raHw/4Wh1LUrbzZfKS4l+YWaKrf63Z82G+Wvq5JvENn4KntPAH7MGsrOINv8AaPjC9jhhiP3y+Vb5hu/hX71af7GPwc8T2UWv694ivobnWNbuPtPiC6hTYHl6YX1VOi7v4a+dnmtaP7yJ9hHLMNKFz5v+AvwOstS8O6hr/hy+e0ludJlOmam1mss9vfqOEl3J9zfgNXO/Gf4N/G74o2fgv4ffHTVrPWAyTT6lcafZJb/ZTGhKLDKqqxBAJO7B9q+jdC+E/wAWfhj8cNbh+E3i7RbC11GVZX0nXbR5tOvJz1ZXT5om/wBha7jxB8Kf2jPiJcfZPilqvhTQNOhiaOSHwbaNLLPGw2sDLP8AdDKa43ntWkuaUiK+W0Ix94/JD9rr9lHxLpul+E9R0PWb6/vPFkv2Wa0urtn2TBsQ7Wbr8oH51+un7BfwY1L4TfsbeG/hnNpVpaXnhy0/4mJsZOZZZPndj75OD9K+cv2tPglaan4g8LeGvCMC2qaNr1pcwxxDd5aRMoX8MA7vfFfdX7PWmeb8IdS1LUP3Ml0ztuRPvbeP55r0cRns8VhqVOJ5byTB4KFSvCO5Q0m51uSeSLT9SlWR4Wyh9AK/Jb/g5R0Zrv4ofBq6dN4XwJqcW/HUjW7xz/6M/Wv1k+H9xp6eKoT/AGjsDhkmLd1PFfmn/wAHMHgmysPiJ8IE0e+M0I8O6uob0P28OR/4/X03D04Sxr5ex8TxPh3HBwl5n7MwXdx5cWz4npAkkcZa2LDcpwPlNaNlc6g958/xQgIOR5PlKSK5a3ubOaeBD8JpZ2+zwl7wqcE/Lk1p/wBo6fBrSW3/AAqq6Q+aw88IcHiuWUqd2byiZXxt8DL8UfhdrfgvWfGVnq0F5p8ipbFBv8wDgZ9xlfxr4j+C2oJ4E1mPw/dhlayujAYgNuFHf8M1966fqWk/azA3wnu7aNEctKEI8xq+Sv23PCa+HfH9j8StE8G3Wk2GoQJbX8pgIjFwD8rH0yDjNeRmuEeIp80T6DIMw9lU9lI9V8Ua34d8VeDYNIv71kj81ZN4+VWA+7xXmfgv4Nra+Ktd8R2/xE8QW0t86hTDds0aJ/dVV/hrO8Pa/a/Ez4ZvpGn6w9vqFmhAkV8Ff9v6+lcR8LvhL8WfCmsahq2p/FjxXN5hLQzWdx/rVPY/LXzVCg/grH2lKh7Rykpcp6doHwU8OeA/F1zrMfjHVpIp5kuCt/fM372vQPFXi7T7rw5ILa4ZYxHt314U37P3ibW9Vtdek8e+LFxc+ZdPd3uQx/u7P4a0vib4nTwh4Wg8OW99LI8smHlmf5krjxGFhVr8tMvFRnSp+7LmOUu9Pv8Axt8T7eG3t3/dxvJIz/8AfNfVHw48SWmlfCuTQPsjebErxIP+A18wfBZLvUtQ1HxYLn712IIVeTdtVa+sfhZcWN34G1VLjyN3z7Pk+b7le9hsPCjRhI8adWpVgeTjXLnTpVuFtFRo8E7vrXwF/wAF5pJPEVl8ItZubcBseIIOnZZbJv8A2pX3v4iu45p440Hysj/cSvh7/gtzpsd/4I+El3bxuqrq3iWLbjpiHRm/9nr7Th6cJY2XL2Pn+NcDVWVwlLuj9X9Pu7ma2hkk+MCWoNrERpzuAeg4raW8u11r5vizv2z4W2YjABWuW0nStNutK07VLv4VPfs9jAftsZ+/8g5/rWpdz6DpWofbL/4azwJFITLqBXKKgBLM2OwUV50YzqVeWJ5E5cq5jdtr/UvtSRP8To5shsxMBiPFfJf/AAWV+PKfBH9lqyttW+IVpqU3ifxZY2FvGB88UbPueT/ZCxgn3ANdz42/4KEfsqeHPgbfftAeB9Dk8W6Na6TdXbXPhuPzgXiV8RyH/lmSVAwfUV+CX7X/AO1n8R/2p/EGj618QhPDJb2l29zbrcnyBPLfzypgdmjimEOP7qivqss4cq4iPNX2PDxGc08NJSp7n3f4G/av1L4car9k1qDbHLGVa8X5454sD5sdq+pvg3+2L8I9U0KC6ufFlomxDmBpdua/I79m39qCPQrOLwN8WI5rvTHQJBfzJuNvnqD7V9MT/smaX8RvD8Xi34aanBqGn3Khlls7rhMjO0heQa+Wzzh+OErXnsfa5RnM8zpe5I+4/H37b3wZg0maWPxJaJIo+RYpd2Pavk/xp8bPE/xi8WzT6MWi0sSlWZ/ld+/H5VwHhz9kjWdIvmhvdPAMbZy7FmP517B8Nv2ePEXinV7Pwp4fsw1xd3UVvD50uMuzADHsM5NfO0aeCpVPZwlzSPehRxEoe1q/DE7T4MfGf4ZfDPwUH+Injiz0KC5vSLeXVXKK4z95pBwoB4+bauevWvqj4bfElU8FXmr6T5Gp2E0bSR3+lzJcQSLjtJG+xq/NT/gqJ418B/Bi+074RfC/xAuval8NrmRfGq3MYNndi9A8202n5nwAOR90kGvkTQPij8VP2Y/EFv8AFT9lL4q65oHhvX5MR21vcuUt5wNx0+4i/wBW7jqHbaxUjmv0bAcJU8Zl8ZOXvH59ieMquX4+VOEeaJ+0uo+KNR1OYSxaPHjLeQp3/N/45Xyv/wAFT9GufF/w2+G9vd2nkvaeJvErbM4+/a6GP/ZK86/Zy/4LP+IZL2xsP2m/hbpuuRGUGTWNLtvImb2f569x/an+NX7L/wC098L/AANqvwl0xoF03UdW/tOKe5YuJZYdOYZ/74Neng+HMRgMS5xl7py55xZTzbBxh2PvzwjfXkfhbS5T8Y4bSH+zIN1qW4iXYCc14J+2x+0d8cJvhrEn7Iviu18QvZ+I7OTxFtmUyRWMFykrqE6yB9hB9jivQD8P/jd4m8C6RYP8ENRstNtbFEu53tB50uF5JwcivlX9oLxT8M/2aPFv/CU2if2VqcUZNzaRsUeVeysp755NdmQZBh1J1a3xHHj8xpyh+7kfC3/BRT4IeM/2PP2hNX0f4Y6xq2i+CfHtkmv6foVneMkGy5H760eNThvLlZwP9nae1fMmoaZ/bekG3jUh4X81Sr4LN1bOetfUX7dn7fmufti2uleBvEnhXT7SLw5dGXSdWhiAuQjRlWjZu4Pyn8K+crzS9W8PNFcXsAkjkXMU8I+XB9a+vapqHIj42rNqpdHPQRvFtfhjKBkk/wCqI9frXe/CP49fF34Man/a3w28ZXemlyPMghlJikA/vI3B/CuInEOnatDqEbKbOZyJgDxk1qXmnvDm/wBJAe14JX+6K5KuEwuIp8lWPMOhjcVhqnNSlyn2n8Af+Cot3H4mtoP2ifBa3umTOsUmr6JEqXUeePMEf3XIOMg846V+nH7JGifD/wAf+ObD4qfChodf8M2vhS61jR9dtUOy5nLGDyvVJkcSh16q6Dsa/AO00gatCHsNYWMy/IcHhS3HP1zX25/wSw/4Kz+K/wBgnSde+G3iTwTL4n8J6mXurezhvPs8mn3JCLIiM3Ajfbv293JbvXx2ZcH5dOpGvSj70dT6rD8Y5osPLDzl7stDj/8Agof+zT4t+GWueIPGvxFvGl1r4iW2ra7LFE+WjWK4jKrn+FlVgM9hxXzH+zd4p0Lz9S+Fnj1RLoPiJSshA+aCUD91OG/hwcHP4V9tft0/t+/Ar9p238D+M7bw9bJdTx6vpOq6DcXDNPpST+WPMDr8pDbAuD61+eOiY0/VJtOiZgIZHVHXqUDEA/kK+my+j7PDxPm8XODq80ToPEXhPU/h54wvfC/iHa7o7NbzL9yeMnAkT3IwD719W/sR2Ooa14C1izgztt9ZDBP7u6CIf+yV87i/sfG9tF4e8TXfkGCMCw1No98lvz0I/iUn8q+pP2APD3jPwtYeK9H1VXV1ubORZrdd0M6tHJiRG7ggDjtjFejOXunI9Yn64r/wV++H0Kl4/gN40dkypZdQ08Z9sGXFeHfts/tEfsj/ALaXw9l8FfFP9krxdY6ncw40fX9P1DTVurRz/FuEvzA9we1FFeXSpRhU0GqkrH5ZeMf+CfPxZi1m7j8PeE7ua089hZXFxqFkrvH2LATcHFUtN/Yu/aOsbR9Kv/AUt1ADlWOq2Py/QGaiivXVSVjllOV2R63+xD8ZtT8MS2B+F05LghXGo6epUjuMT1n6H+wb+0jb2sFrP4IvJJAg2x/2rp+107Z/0jrRRUe1maXdifR/2EP2kV1YPpPwtv8Ay1kzJD/bOmgZ7nm5rTuP2Lf2grzT3s4/hDqkBBZCq63phwSc4z9pooqeeQlJ85Rvf+Cdf7R2vyRXNl8L9X8yNW84/wBraRnk5xn7SM/d65qlN/wTp/a50/UjqkXwN1eZJmKKv9v6MDx35vaKKht+0RU2dFo3/BOr9s+eT7TYfs66zIYYwFU+JtDUHd1/5fa9h/Z4+Bv/AAUg/Z5tdU07QP2PtR1q31Aw7YbvxxogW18vzPuA3vG7zMnt8oooqarbZjzyP//Z", "position": {"bottom": 0, "left": 0, "right": 0, "top": 0}}, "license_number": {"value": "4444 5555 6666", "position": {"bottom": 228, "left": 153, "right": 359, "top": 204}}, "gender": {"value": "Aadhaaritis", "position": {"bottom": 155, "left": 213, "right": 278, "top": 141}}, "name": {"value": "Name:Kettan SinghShow:Janhit Mein Jaar", "position": {"bottom": 128, "left": 164, "right": 304, "top": 94}}}}}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"code": {"type": "string"}, "status": {"type": "string"}, "date": {"type": "string"}, "result": {"type": "object", "properties": {"rotated_image_height": {"type": "integer"}, "image_angle": {"type": "integer"}, "rotated_image_width": {"type": "integer"}, "type": {"type": "string"}, "details": {"type": "object", "properties": {"birthday": {"type": "object", "properties": {"value": {"type": "string"}}, "required": ["value"]}, "head_portrait": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["position", "value"]}, "license_number": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["position", "value"]}, "gender": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["position", "value"]}, "name": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["position", "value"]}}, "required": ["birthday", "gender", "head_portrait", "license_number", "name"]}}, "required": ["details", "image_angle", "rotated_image_height", "rotated_image_width", "type"]}}, "required": ["code", "date", "result", "status"]}
2c6f4ae3-539e-40ce-ac12-1d85ec8acc2d/3422d64e-fc39-4854-852e-aabc38d601d4/0/0
Plate Recognizer Snapshot
Plate Recognizer ALPR decodes license plate, vehicle make, model, color and other attributes in 90+ countries.
null
Read Number Plates from an Image
This Snapshot API endpoint reads all license plates from an image. If you need to detect vehicles and decode license plates from a live camera or video feed, consider using Plate Recognizer Stream. Contact us to request a Free Trial of Stream. If you need to blur license plates, consider using Plate Recognizer Blur.
200
Success
{"processing_time": 288.758, "results": [{"box": {"xmin": 143, "ymin": 481, "xmax": 282, "ymax": 575}, "plate": "nhk552", "region": {"code": "gb", "score": 0.747}, "vehicle": {"score": 0.798, "type": "Sedan", "box": {"xmin": 67, "ymin": 113, "xmax": 908, "ymax": 653}}, "score": 0.904, "candidates": [{"score": 0.904, "plate": "nhk552"}], "dscore": 0.99, "model_make": [{"make": "Riley", "model": "RMF", "score": 0.306}], "color": [{"color": "black", "score": 0.937}], "orientation": [{"orientation": "Front", "score": 0.937}]}], "filename": "1617_7M83K_car.jpg", "version": 1, "camera_id": null, "timestamp": "2020-10-12T16:17:27.574008Z"}
{"type": "object", "properties": {"processing_time": {"type": "number"}, "results": {"type": "array", "items": {"type": "object", "properties": {"box": {"type": "object", "properties": {"xmin": {"type": "integer"}, "ymin": {"type": "integer"}, "xmax": {"type": "integer"}, "ymax": {"type": "integer"}}}, "plate": {"type": "string"}, "region": {"type": "object", "properties": {"code": {"type": "string"}, "score": {"type": "number"}}}, "vehicle": {"type": "object", "properties": {"score": {"type": "number"}, "type": {"type": "string"}, "box": {"type": "object", "properties": {"xmin": {"type": "integer"}, "ymin": {"type": "integer"}, "xmax": {"type": "integer"}, "ymax": {"type": "integer"}}}}}, "score": {"type": "number"}, "candidates": {"type": "array", "items": {"type": "object", "properties": {"score": {"type": "number"}, "plate": {"type": "string"}}}}, "dscore": {"type": "number"}, "model_make": {"type": "array", "items": {"type": "object", "properties": {"make": {"type": "string"}, "model": {"type": "string"}, "score": {"type": "number"}}}}, "color": {"type": "array", "items": {"type": "object", "properties": {"color": {"type": "string"}, "score": {"type": "number"}}}}, "orientation": {"type": "array", "items": {"type": "object", "properties": {"orientation": {"type": "string"}, "score": {"type": "number"}}}}}}}, "filename": {"type": "string"}, "version": {"type": "integer"}, "camera_id": {"type": "null"}, "timestamp": {"type": "string"}}}
c1eac149-87c8-4fc2-9884-0f3c7bfa46d8/c96a1d3b-4515-4bac-85ca-fb13dbbebd80/0/0
ImageGenerator Detection
This API can be used to identify the source of an image. It can identify if an image was artificially generated or if it is real.
5.8
Image Classification
Provide a base64 encoded image or a URL of an image and the endpoint will provide a classification for it. It will tell if the image is likely to be fake or if it is a real image.
200
Response
[{"class": "Fake", "confidence": 99.99444484710693}, {"class": "Real", "confidence": 0.005556088945013471}]
{"type": "array", "items": {"type": "object", "properties": {"class": {"type": "string"}, "confidence": {"type": "number"}}}}
05754b15-7b6f-4e97-980a-6a4843f1040e/97f6c1a2-e668-40d5-9a57-870614e0989e/0/0
License Plate Recognition
Supports license plate recognition in 67 countries. Supported Countries
8.7
License Plate Recognition
The size of the input image should be less than 5MB
200
Response
{"processing_time": 18, "plates": [{"text": "02\uad6c 0844", "country": "KR", "state": "", "confidence": 98}], "code": "200", "message": "Success"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"processing_time": {"type": "integer"}, "plates": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string"}, "country": {"type": "string"}, "state": {"type": "string"}, "confidence": {"type": "integer"}}, "required": ["confidence", "country", "state", "text"]}}, "code": {"type": "string"}, "message": {"type": "string"}}, "required": ["code", "message", "plates", "processing_time"]}
82c4b55f-25a5-4ca5-a8ae-5506231b4f84/33207aeb-a9e3-4f7d-9f49-3f5b58e6867f/0/0
ocr
Scene text OCR. Detect & recognize text lines in natural scenes.
null
OCR for scene text detection
Detect text in images and recognize the characters. Must specify the language using language code. Currently supporting: Chinese simplified (horizontal): chi_sim Korean: ko
200
Response
{"predicted": [{"x": 81, "y": 19, "width": 678, "height": 76, "ocr": "\u8a79\u59ae\u5f17\u8bf4\u5979\u524d\u51e0\u5929\u53c2\u52a0\u4e00\u4e2a\u6ce2\u97f3\u516c\u53f8\u7684\u5546"}, {"x": 82, "y": 54, "width": 681, "height": 146, "ocr": "\u4e1a\u6d3b\u52a8\u3002\u542c\u4ed6\u4eec\u8bf4\u3002\u6700\u8fd1\u4ed6\u4eec\u516c\u53f8\u9047\u5230\u4e86"}, {"x": 85, "y": 87, "width": 682, "height": 212, "ocr": "\u4e00\u70b9\u95ee\u9898\u3002\u6709\u4e00\u67b6\u98de\u673a\u7684\u8ba2\u8d2d\u5ba2\u6237\u7f34\u7eb3\u4e86"}, {"x": 83, "y": 122, "width": 354, "height": 282, "ocr": "\u9996\u7b14\u6b3e\u9879\u4e4b\u540e,"}, {"x": 281, "y": 122, "width": 866, "height": 282, "ocr": "\u56e0\u4e3a\u7ecf\u6d4e\u95ee\u9000\u8ba2\u4e86\u98de\u673a\u3002"}]}
{"type": "object", "properties": {"predicted": {"type": "array", "items": {"type": "object", "properties": {"x": {"type": "integer"}, "y": {"type": "integer"}, "width": {"type": "integer"}, "height": {"type": "integer"}, "ocr": {"type": "string"}}}}}}
6dd43074-6785-464c-93d2-b1c2f863b805/7ba91fee-a6b8-4f5f-b969-6c2ac94d19e0/0/0
Malaysia ID Card OCR
Extract all text on Malaysian ID card, including head portrait.
6.1
Malaysia ID Card OCR
Support jpg, png, bmp, pdf, tiff, single-frame gif and other formats, the image size does not exceed 10M.
200
Response
{"code": "200", "status": "SUCCESS", "date": "11/22/2023 06:47:11 PM", "result": {"rotated_image_height": 370, "image_angle": 0, "rotated_image_width": 492, "type": "malaysia_id_card", "category": {"citizenship": "one_to_one", "id": "one_to_one", "gender": "one_to_one", "name": "one_to_one", "head_portrait": "one_to_one", "address": "one_to_one"}, "details": {"citizenship": {"value": "WARGANEGARA", "position": {"bottom": 314, "left": 350, "right": 461, "top": 302}}, "id": {"value": "900311-13-6671", "position": {"bottom": 125, "left": 20, "right": 175, "top": 108}}, "gender": {"value": "LELAKI", "position": {"bottom": 327, "left": 398, "right": 453, "top": 314}}, "name": {"value": "GROSEN EOLYANAK HENRY", "position": {"bottom": 246, "left": 13, "right": 248, "top": 235}}, "head_portrait": {"value": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAC6AJIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7w1u0uWMd20UQCrhgo7f41mXMyxsBBLJjOTmte61IaqBaM2z3A61UuPD8srKjTfLt4IFfr1KtGnFcyPxWtTjJ6LQh0MiXU1d5T34Y1vxQPOigKzH0HNU9A8H3Md2ssbGRe/Fd7pHhoxwRuE2ED5jtzXl5jj6cHoejl+AqVEjI07ww9xIoki2r1xmtzTvDKQyHbFnA/u5rTCW2mL++YZ25YkcH6+lYN58XfBmjyNDfa7FFzwC2K+dq46tXdoH1WHy2NJ3mbEmkw+WyyQr1GCFxUn2C2IG1FyF6ZHNeY+Pv2tfhj4QjaQX/ANok2k7ImOOOleU337d2qavPJdaEbO0toG+d7gZYj0AqFSx09Gdf+xw0sfU1vY2q5LQ5XufSnf2ZbMWEeDu9BnFfOWnft++BE0lru/tna4RcBUkwCaueDP28fCetakllqRS3DNliWJwKboYuGxb+quK0PeJfDMDMSwHPTIxWfqHhplTbGNp9M5qhofxy+Hmuzrb6Xr9vK7rnBl6V18MtvPEJoY8hsc9auniq1PSRzyw9CtokcLeeH7tJeAT9DVCe2mt5zDImGr0eaxguMp5YyBnIrlvE+hzLBJcREBwPlI5r0sJj3Ooos8nFZbKknJGC8vlrwOR1FNS4Eq7tuB1yawdV1DVrIfNuAHUmq2l61fSSojv8rHgetfSxpOSutj5udaMKtmjpLib5P3Um3nuKp6p5/wDZ8kjzAYXjjmppGEighhT3SK4haCQZDdfzpJwpvY0c+eNkc2qTlQTN29KK6L+w7D+FOO3NFafXI9jH6vMwdKLvOihWG0n7w5IwK6bSdPlvrkRxuemDlelYug6PqTMrSbmIOK9D8J6KYpd0keSUySBXj5nXjTTsz0Mpws6tRKSLmhaMtnZBSQSi8nbSeKPEtt4W043t5NgRgcAjGa2AscMQhxyev0rwT9p/x7H4Ijng1i6ZLa4DiNi2AGxXyfv4qskfbxw9PDUuZI5745/tZ6T4ZmkismMjykeZCHwAvsa+UPin+0JqXjXWbm8Mogh35giVyOPTivPfiz8R/wC1dYu2iupZB5+EYkkba8/m137Tchribgc8N1r6nC5fSpxV1qeVUxVScnbY9GuvH+p3Vq99cz5DA7QzbsY6d6wrXxfLdXUcct0o3EkKucD6+tcjNrsZdnV3KFcBB61HbajBFcJdbHx/KuyVKKehze9J6nXal4mu31L7DHMrDPzdQKePGl2LnFtcvEmQC0Y4rkbrWIfPN3FJz/tHmoLfV3M2C4wTk80uWnfUa511Pd/hz8XtQ8PT+bJdlz5f7p93PHrzX1p+zj+3T4Z1Wwj8P+O9SaG5VwsczucNnp/KvztsdbjTKReYSOuPStfTPELxXaC1nCMrBizEjBrkxGFpVVdI6qFScXqfsR4e+I/hzX3S30vVYJJJOUUSDcR9c1tTMl3bCNFBLL1xxX5Y+BP2hPEHhTUoJF12aR4xwqOeORX3z+zb8bvD/wAUvCVvc6bqrzXEMe25QkHmvCxGEnhrTR6MKsZtxkdV4u8Gx3MLBEz361wE2mtYamtuylAvUAV7U5gnQLIucrxXIeKvD0Jma4jgA98V6mW5pN+5JngZjlcObnijm1RvL2huc5xmlhiMkm1n2+wFMkd7Zz5ikcY5GKlS4jYhlHGfxr3eZzjc8NRUXYsrIiqF81uBjpRVYtJk/J+tFc9vM1+Zt+HbJ/O3xYK56V3WnQqFyEwdnQVz/giwcW6yi2JweciumuTJEjPtCkYAxXx+Y1nKrY+symhy0+axT1O+hs7Nry7lVFCkbiwFfAH/AAUP+Ouj+OL2Twz4fvW/4ls20tGchyBzgjrXvP7Znxl03QbG88PXesyWcUFmzzpbSfvJifugAcjp1r80fHnje41m7kuJLtn3SHILZx6Anvx1PrXVluH5PfOvF1WocpiXU09xdOxkKjsGbJNY99cyCcjlQO5pL3V0b5oZMNv6k1lahqMt0crzz+de4sU2eS6PKXDqSRkJLJw/TBp8uqDaI4HON3esVrqOKENIAx/h5rNn1C5kYlbc/L/tYpTxDSHCneR2cimaeMrOMHqN3Wqt1fwwz/ZzIQR0wa57QdZ1C31H5iOOilsmn6xqlx5hlkhKsTwcVnGvF9TWVO50un6hMZysN4AQnOWq6mvNFMqvLkhcMVPf1rhoby9+0rLDJ977wHar4u3aZWlkK7Qc4qua/UtQ5UdlaeJ2swHe7LP5mQd36V9B/sX/ALROq/DbxxBHc6mVtbmUK8StkAmvlWyuoXRkzz1BbvWl4e8Q3djrSXUU7BI5FbKNzx6VnWiqtNxJjZVD90vBfiAeItFt9UEap5i7hluQPpV/V9PW4gYjnjqK+ef+CeHxwsvib8K7fSZL4yX1iGW5SU/NjjHvX0rKNq7YirE9s18y5fV6x6M1z0WjzHxLALab5oyccdKzYVkSQsTweAK7TxdpRZZJZYeq5AArio4pjLhyRt7GvrsvxPtaVj4zGUnSqPQseYf71FILc4orpOY9W8LWwgsQB71a1CdiNhjOBlicdh0FN0SWOCzWMryFyTTrgsqNM43DpgV+eYmd6p+iYKKjRsfnn/wU71lPC/iSW7/tXNxqMe2O1AztUZ5PtXwRq+r6jKAkzKG3chT1r7V/4K+6dPB8UdLvhCTE9k5X5vvEHtXwxqzSJcFwuAxODn3r6LC1GqETjxSXOilJc3rXhAc7Sc4rUs/DuuXTYEH7t14LcVb8E+HWvrqSSVQ/y/KpFep6D4bSLT4zNbAtt6Y5FKpilT+EulhHVmuY850n4W3E8XmSNtJPTdmtMfCuST5YASe+e9d5NpVzbr/o8CHd91ScYra8LeDNZvJRJLpRkJ+7syRXjV8xq3ep9Ng8noVEcJ4a+B8clyJ7tAM8rx3qfxh8DoXgdUQo4+5lea+k/BXwh1p9OF/NoMboOcMeap+KPBuq3WqRx/2DHCrtgkcg49fSuKOaTT3OqOR0L2tqfJd58MDYWDmOUeYBya5uTQtWiyqW8jf7RQ19eal8A764865kiRgwyoQZFcpdfCrULNCjaYI1jPUxda9ehmLkrnmYvLYUnZHzDe2Ot6aRLLGUBbA3DFS6Nf3r3AjkAGTwa968VfD+DV7Z7e+slBRcqVXBrxXxfoKeHdUeJWI2DHy+tethq6qSPn8RQ5dT64/4Ja/FGLwz8Vh4evNSITUk2bS/G7jj61+oumTZgAcgnAPPWvw8/Zq8QP4d+IOkazZzOJYr1GGGxnLYxX7XeAL7+0PDlnNJFzLZozHdkgkCvNzGnyVboVCq2uVFnxIiTQNhh7YNeb6iZ4LyQxKOuOa9Q1QRR27GSM4+nSvNvEFxbxX0jeauCflGa9DJ6spz5Tx8692KYxXk2j5l6etFNS4jKA47UV7nvdjwLo9fsI42jRUwSy9AafqWIrVsHn0qLw+DLHHJjDBOQe1LqBkc42Hg+lfnNf8AiM/RcN8CPgj/AILH+Fbl9A0LxXbIAkMskMsp/h3D17V+cFzqdrJK6TjiIEDPfHev1f8A+CsGl2t7+ztctKm6VLpPJHfd7V+TGpxQ27MjLlssD717OEqWoHNiP4h6N8HbCG4Vr2RwUJ3ZzwBXbX3jfRtCwr4cY6oc1jfBrQhL4PSZbP5PLJZs9RXSaX4A0OZXvtRjKqThFc9T+NYVa0Ez08NSqSiiponx88CafeK2pWPG4cFc17n8Jvj38ML/AE9ZbKKGKYvgLIo/rXgnirwT4KXMcAtVK4J+cZB9KyvD2mNpl2Tpb7wr5ID9MdK8nEVKbR7+CjVU0rn3AfHlpc2ZjtLqM+YucIAAK5Txb4/0PRbIvqNwgKtyRjNeLeD/ABt4lmEcKxMT6F+1Vfitc+JlsQ9xbMu/Jw2eRXkwt7Q+gjFRotrc7Dxl+2Z4c8LD7DptktxxxkAmvPdY/ap1nxVI6waKI42HBSOuCvrOzWUX+sRMygEhUTJNdR4P+M/gLTrYWQ8OJIrfKrGDnPpXtUdj53FLmb5nqa2jePF16NkvLFwzfKWCGvKfj9a22j363cUDbZ/mJK9K9j0XxP4a8UXywWOnCJywLIseMVz/AO1B4WEvg1dUhtox5cu0kjp/nFexhJuMkeDiaClA8s+DLXVz490ey04kvLcpsA9c9K/cf4ZfbIfBulNfYEv2NN4Xv8q1+IvwJnvtO8ZafrEdsjC2vUJZRnHIr9r/AIOeJ7HxT4I03VrNCI5bVMA9iBzWmY1JNaHl0abhM6bW582r5PG3mvIfHRKX+YWOB3HrXr2rti1kKIM7e9eQ+OBd3N5sS3O0Nk7V6Cu3h9r2mp4Of39mRQ6lL5S5znaO1FQJDMEAwelFfSOWp84m7HvmjSCGzS5x97ORTJ7gs7EfhSWEoGlxgjr0qQsW6qelfmmJ+Nn6XhNKaPjv/gqhq12/w5sfDqp8t3MX347rX5b+LtCfTtTSMtvMjZx6bq/Wf/gpJoCan8PLHVBECbS+Ac4/hY4r8zPjDo9ha+KYXs4OGulVxnoAa6aGIUaVkehHDwq6s9Z+H2jPoPw3tYorNVZrYA7q5zX08V3F2Hu7porGIny1t/vE1614X0yw1Pwfa4TaDAoUGkuPA2lJM6ykMSMhe1YVMRDqethsJ7WKSPmbWPCPjXVdcD6feytZSThnLDkDPeu98FeD9fn1OdLaxdoBwsjcZPrXq+n+BNJinWVdPPJ5Paul03StOtZhGkBjz0GBzXlVsVSloe7gcvdJ3Od+GXghLW73X8HmMydM/drsvjf8M7O80exkghKF4Rt561Y8P29vDqbvCQPk5wOK9I8faMknhGyVo97LCCorkjNX0OqUVGXKz4+174RarBd21wSpgUESK3fNchoPwcttH8XpqtxdyPFC5ZbWQfKSfevqS4t7TUIzbvCodW6YHas1PCNrc3YuRHGcNyGUV30sV7M4a+WKoro8t8N/DTULvxCNd0xFtnOPkj+7t/xrU+N3ha71H4W3cMkOfIUu5zzkZH9a9atNN0+2gCJEisOflGOPSud+K0NjN4B1KBzwbck4HWvQw+O9rUSPHxWB9lTZ8xfAfTHu9Sm06KPawKuD6YNfqn+xJrGpal8LILfUMA2rlB9K/Oj9kzww02t3epRWO6GOPbn3yK/UX9nfwza+F/AtpFa2vl+bEsh9yetejiKikkj52UeU7u9CeUyOMjZXAeLLeO2vSRFnIwea9DvsGFsoWwma4DxWY55fMWILXdlMuSpofO5xBSo3MP7JbH/l1/8AHqKtrEMD6elFfRc77nzvs0eo20ymCOM4OxKnaDC4z+tVtHMe5vMGeKvGREPyjt/FXwGK+Nn3+E1po8s/aj+HKfET4ValoMShpzbl4B/tLyK/KL40eCNciuW1I2+JrScLcRey96/ZbxL5VzaSW0xQhgQd3oa+B/2q/wBnvxQnim/vbfQ5ru1u5WdTaRZIH8qwpVIRaTPcwy9w8l8KeKZE8GWUtnNj9yAw64PpWloniW41W5YTt0GM1iaVpTaZpp0u4VoWgfZ5Lpgg+4NLbEWwlnSMoV7ZwawxnLy3R7WXVPZzSPTNJ8sWqnvVW/vmW7VPNSMFseY56VjeFPFMNyFhlP31x+NHxM02efTUk06bbKFJGK8aEOaWp9VTcVT3Ox0Xxp4Q0pzpc+oQyz7cswI4rqdU+OHhWPQ47W/1WHaFCq5I+T/GvlP/AIQMw3D6he3Mv2mZNvyy45+ma05PhTea/Yy2jahNJj0nxiulJLSxwz0bPatU1TRmvE1rQtRS4t5DnKdqv2uradbwm8mfABOcciuF+A3wxvtFV11K5cwKny75N3PrXQ+K4/7HdoreTdEV+UGmrnTR5OXUTxHrERU3NlPhfY4rmvEmuSa74UutMa5wJIyuCPamNqrXRa1cABu/pS6Po8WrZ0ksQZX2btpOOevFejgYtvmPnM4nGGiO2/Ze+G2m6dYaTYFMPJIrMw/iGe/rX6A+F7KLT9OjtrddiRxBQvoMV4f+z7+zu3h+xsdQ1O88wJGGiTy9uOnrX0DZwJANu3DYxXpc3Oz4+q0wvGChmYZUcEetcJ4ukhe4YY5z6YFdvehvKYLzXEeKhL9pyc/dzXpZb/FPnc2TdEwQZ8fc/Win/vKK+i1PnLs9N0WWNIGWRSeetT3t3DGzYJ96q2F3+5G2MJ6+9Vb67LFlK8mvgMXO1Ro/Rctg5UkyLU7gTRssWM469a5LXdPgumC3EW4HIyTnrXS5LFs+9ZOpAMOThc8kivJqVPeVj26MUlY+EP2hPCKeEfiTqFqiFRdSlgB/nivOZQ6u7GXarcYNfTv7bHg6G30y28YQLzA5jf1w3T618qat4l0wgCMEfNxXbb2sEmdMJezqJlrSbyHRLjzTLnac4q3dfFC0u7kW0wwu7Gc8CuN1TxDBKJCOuPkFcXeaPrur3BaS/e3ic8FTXM6PLI9qGKbiezX/AMRPhzpcqXHii5hldTykX3hW2vx1+Cuk2A1WwuGcyjaIVUbgfevAbDwF4cDmPUL13bH+seXbmtPS/A3w3T9zfXWVB6faDXQoQtqP6wm9T2bTPj/4Hlnaey1L7OFGPLkOM1eg8c2PimweaG4SQDO0qa8Nvvhf4Pvpk/sdjGA3Uyk5/Kug8FWN/wCD92npNvTOc5o9nG2gpYhqNz0ElFk86TG32612Pwq0ddb8YadY2w3GW5XP0yK8wg8S2zEwzR7mz69K93/YqGieIviZH9pkzJbxtIifTFehQjyQ0PnczxCm7H3F4NsG0/TYLZogCkYXOeO1b+P3uf8AZrK019sEY/GtKNw8vXtWqsjw6i0HXDqsZJxXE+MkTLOvXdiuzvBmHlN1cd42Uuzjyto25r0cuv7Y8PMl+5OYWdcD5O3pRVcFcD5jRX058tzHotjdxm2ITPBxz1qK7kVm8zcM/WohcMUY9Oew61DLcBVy3I7mvznH6TZ+n5UksOiRZEZuSOmOtZmrXUECs7gEEEAehovb+KFfNDMgX7zKoxXi37SP7WHgD4T+Fby8GvwTakkLrBbIwJ3EcZwa48PRdV7HpSl7NXZ4B/wUk/aDhg1vTvhxoOqxFYrnfe7TyhPQHH0r5gl13fJILmcBicp83UVwnxS+IGseP/Et94m1e8826upWmZmYk9eBntU1nPceJ9Dtr1JCHWMb8GvYWHVKGpyRxSnOx09nq8xl3PLubPQ+lWzq8288Db3rirDW3sblobgkEYANdjpAtL2ESecDvxuA7V51be57WHrpNXH/AGH+0X3Sxlgeh5qVfACzqGt4JQx6BBya6vRYPD0NqFuZBuToRiur0PXvCdgFmQK7BcgECuJ1WmevH2ckmzitL8MaxpFirvDKAMHLA1PcS3hcKCQGHNdx4j8eaJqFmsSIkWU4BxXlvjjx5pmmFohMu7OFx1rpw8pSmcmLUVDQsXeqJp8xE84XcuMn1rU/Z9+P954A/aD0zVLe+iNrHJsuBI3DKccGvI9b8Uy6hm5DNsVc/erD8NXKfa21Jw2TJneCcivo8PSjUjY+NzGTjI/eHwB4ntfFmh2euafLE8N1bq4MZztz2rrYF+fdjjbX56fsD/tsWfhnSrbwD8Q9R8uA4FpO53YxgBSfTk8197+G/E1hremQ6pYXiSwSrmJo3DDH1FctWlKlNnnxxHOrGtckiPiuK8XCNPMicYBHXNdhPL5kakf3q5Hxim+ZvpXbl7bqo4cwX7hnJ/ZIRwWNFRSRv5jZZvvHtRX1fyPjWzsHvd43L09BWH4v8deHvCOmS6tr2pQ2sUYz5k7D5qwPiJ8WPC/w38FXXiHxHfrEtohaNCwDO3pz1r80v2oP2xvHPxg8Szo2rvHpocpb2UTFQVyeTXw2Iwsq1R6H6fhMRSpUYxPZ/wBsj/goRfX91N8P/hPrTQWp4l1FGIZ/pXxz4n8a6jrJeXU7+a4dz800sjMzfUnkViavr1zLdea8vT7nOcfj3rKu9W81G3OB+NdOHwiorYiviZzdokGo3AYO6yn5ck89vSuj+FGsWsCSaXcykAcjJ7Vxd5I5mCg/Keo9ar6Hqc9hrZYE4YY608VFuBOFV6iueqeKNC+2kvY88Z3LWTa61rOjqLVC5ZOOD1rd8O6ol5YxuSCdvOTUWrWkU0xmjiUZ64rxGu59Ly8sEyCP4n3cNs0dy5VvfNUbn4o6mCph1BwOexFTRaPptzdiC8tc+Z36Uuu+FtJ0yFvs2wlvuDOanlovc0hi58tijcfFXXJ4/Lgld2HA2mobBL/XrpbnVpJiGOSC1R2nh+WILdCPg/eHpWnbym0jaRsDj5Riuil7NRskc9WVe3MZfje+h02EWNrI4LDkg1S0C9aC3SN3OG61m+M9RmvLvaE+UdDTtPEsMSbwemTXsYBt6nzmYycrs9I8K+I30qZH+0MuRktux/8Aqr7X/YJ/bMvfDetQ/Dnxfqbtps7KIZmk3eWewyen4V+fdrqbzICgx2ORXT6Tr2r6ZL59lO6MAuDGQCMdx716NWnGotUfPU6jjM/d7TPEun6paJdRT5Eg3J5bArt+o71leJ2jeFnGDxgH1r8uP2f/ANv74rfDKSPSr3V3vrKMgNbXTZbHoCa+wfh9+3z8KviXYR2mrah/Z13IoD20zZUn69q5cNh5wrXRvjJ82HPU3ClyRk89aKw1+IPgVlDJrdqQRkH7WP8AGivoOaR8t7Nn5ofGX9qHx38UpnXxJrZaAN8sMZIA+orxvXb4yu1yTvUnglcGtq8QS3zLPjCgBmA6msPWmhAZXQjb93A4rz3TUZbH2NOadNIz3ZpYiTFlT0JFZd+8kQzFBlvQitXfbyQeXHu+uKrXD2mftEcbE4xgik0mdCrxijBmRyVdzglqoziWyvNxJIIyOa3LyCMg7I2bIz06GsTX5fNw8cbjYcGsMRGn7PU0o4iPtUd94F1xRbLC+TwK7BJYbq3SQKB1yfWvLvDWomGGCaJCB/FXoGkX5mhDwLkDqOwr5Gv7tRn1+Hl7SiixPYRyowtJQ0meOeaoSaDcJdD7XKzk9i3SprnUBDKZNoXZ0wKqXmvySKWBz/telY2i1qynTs9EWLxo7VfLUcVha1fCOH5Wx6c9KvI090yySn5e+a5zxDeGa7XT4EyN/BArWm1dWJqJqk0zH1qcyTRn1PP0qc3guAskDkKq4ODVLxA6x3QiRCCOvsKi09mSVY0bKk5PvX0uDSUFY+Rx1VczibdperGdhY4z61tWVw0qbwxPvk1z8TxFy6xk89AKtwXTRpt+ZRjqTXoXR43Kkb11ei2Rb2MgYOc5NW9J+JWpWzb1mEZ6q/INc8br7XbNbB2Py5xmsWxvZftZhkQlUJFbU9HoKtfkPaLf4reJzbxlddmxsGP3j+lFeRJ4oaNBGs7YUYFFdHMzz/ZxOp1XWnEc6wvho3y2TyaxL7VZNRZCWwFPIHeneI2YXL4J5lOfequjqplYFR9z0rnqO87HrUX+6RaMyqxkEgVfeq1zqNkudswJHpVHWndXcKxA3HgGsy35Y59aSSN1Zo07jUhIrYGAehTiufvvGGnxXklmljMzpwoU/eNaJ/4+wvbb0rzrxNI6eKbhkcghQQQfc1wYp9DSjbm2PRND8daPHpgiaxuhISwACg4bv+Arp/CnxH02yM8V7a3BWOETsQgwV9vpXiWhyyrcqFlYcv0avSfBYDadIWAJOhtkn6189ioJ3Z9XgqjhQO58R+Jba1W0mitJJTdkeWsDdMjofzH5VgXXxB0yx0j+17u2kUxTmJrWU/O7e3qKm12GFNJ0ZkiUFpYdxC9eG61514gZm8PXl0zEyjUziQn5hz615vs79TqVaUju7v4t6XNZSrpmmXD+UgkYg4ye4/lVj4eLJ4s8RSJJaTILeNZX89ByDmvMo2b7NL8x5znnrkrmvcPhkiL4j1oKgAGmQ4wOnyvXVh6ackZTrSimjgfGk9v/AMJBP5LfKGAOO1Zr3sMcYgtyTnow7VF4lZjrs+WP3m71nxE8c19lhqcVSR8dmFRyqtnT6PqUc0XlqcsFwfr61aivW80QSsfXGa57SXdZTtYj952NamT9tY57V0+yVjyXUdjTjvYEaR2kIxwSO1ZuJBfbFmCiU/L61LFy8gPcVnKzHWhkk4Tj2rWMEkEptxsav9hynkyqKKQO+B85/Oiq5TA//9k=", "position": {"bottom": 291, "left": 328, "right": 474, "top": 105}}, "address": {"value": "LOT 1746TAMAN RIVERVIEWLORONG 1H JALAN DAYA93450 KUCHINGSARAWAK", "position": {"bottom": 337, "left": 15, "right": 191, "top": 272}}}}}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"code": {"type": "string"}, "status": {"type": "string"}, "date": {"type": "string"}, "result": {"type": "object", "properties": {"rotated_image_height": {"type": "integer"}, "image_angle": {"type": "integer"}, "rotated_image_width": {"type": "integer"}, "type": {"type": "string"}, "category": {"type": "object", "properties": {"citizenship": {"type": "string"}, "id": {"type": "string"}, "gender": {"type": "string"}, "name": {"type": "string"}, "head_portrait": {"type": "string"}, "address": {"type": "string"}}, "required": ["address", "citizenship", "gender", "head_portrait", "id", "name"]}, "details": {"type": "object", "properties": {"citizenship": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["position", "value"]}, "id": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["position", "value"]}, "gender": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["position", "value"]}, "name": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["position", "value"]}, "head_portrait": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["position", "value"]}, "address": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}}, "required": ["position", "value"]}}, "required": ["address", "citizenship", "gender", "head_portrait", "id", "name"]}}, "required": ["category", "details", "image_angle", "rotated_image_height", "rotated_image_width", "type"]}}, "required": ["code", "date", "result", "status"]}
b92bf405-5420-42f8-be17-32348ddbc107/48fc2dd0-ef9c-4741-baae-25d6b96f81bb/0/0
Vehicle Damage Assessment
Identify over 15 vehicle damage types from 38 car parts. Freemium available.
9.2
Main
Main function endpoint
200
Output
{"job_id": "4feb7c0c-0705-411b-ae4c-58498d78cf31", "draw_result": true, "output": {"elements": [{"bbox": [99, 217, 167, 308], "damage_category": "crack_and_hole", "damage_color": [75, 100, 0], "damage_id": "6", "damage_location": "front_bumper", "score": 0.839188}, {"bbox": [92, 207, 245, 325], "damage_category": "crack_and_hole", "damage_color": [75, 100, 0], "damage_id": "6", "damage_location": "front_bumper", "score": 0.305776}, {"bbox": [102, 155, 150, 220], "damage_category": "car_light_damage", "damage_color": [50, 140, 0], "damage_id": "11", "damage_location": "right_light", "score": 0.416646}]}, "output_url": "https://sensor-ai.oss-ap-southeast-1.aliyuncs.com/vehicle_damage%2Fdraw-150503.5000_20210714150503.jpg", "url_expiry": "2021/07/14 15:06:04"}
{"type": "object", "properties": {"job_id": {"type": "string"}, "draw_result": {"type": "boolean"}, "output": {"type": "object", "properties": {"elements": {"type": "array", "items": {"type": "object", "properties": {"bbox": {"type": "array", "items": {"type": "integer"}}, "damage_category": {"type": "string"}, "damage_color": {"type": "array", "items": {"type": "integer"}}, "damage_id": {"type": "string"}, "damage_location": {"type": "string"}, "score": {"type": "number"}}}}}}, "output_url": {"type": "string"}, "url_expiry": {"type": "string"}}}
0234d4ee-c3f6-4dfd-bbd4-cc8635766ee9/afe541b3-19f8-43f0-960a-5fcad4140e88/0/0
Face Fusion
Based on computer vision technologies such as 3D face and adversarial generative networks, the image fusion operation is performed on the portraits in the stencil image and the fusion image, and the fused image is returned.
8
Face Fusion
Face Fusion
401
Example
{"message": "Invalid API key in request"}
{"message": {"type": "String", "required": true, "example": "Invalid API key in request", "description": "Error Message."}}
0234d4ee-c3f6-4dfd-bbd4-cc8635766ee9/afe541b3-19f8-43f0-960a-5fcad4140e88/1/0
Face Fusion
Based on computer vision technologies such as 3D face and adversarial generative networks, the image fusion operation is performed on the portraits in the stencil image and the fusion image, and the fused image is returned.
8
Face Fusion
Face Fusion
200
Success
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 0, "data": {"image": ""}}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image": {"type": "String", "required": false, "description": "The result image, returning the Base64 encoding of the image."}}}}
0234d4ee-c3f6-4dfd-bbd4-cc8635766ee9/afe541b3-19f8-43f0-960a-5fcad4140e88/1/1
Face Fusion
Based on computer vision technologies such as 3D face and adversarial generative networks, the image fusion operation is performed on the portraits in the stencil image and the fusion image, and the fused image is returned.
8
Face Fusion
Face Fusion
200
Error
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 400, "error_code_str": "ERROR_PARAMETERS", "error_msg": "image cannot be empty"}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image": {"type": "String", "required": false, "description": "The result image, returning the Base64 encoding of the image."}}}}
9081683c-d3b3-4f53-b1c2-30a0f5e4b382/987cf249-f65f-43b5-ae5d-16d782256aee/0/0
Body Recognition
For an input image, it detects all the human bodies in the image and outputs 21 key points of each human body, including the top of the head, the five senses, the neck, the limbs and other parts, and also outputs the coordinate information and the number of human bodies.
7
Body Recognition
Body Recognition
200
Response
{"message": "success", "data": {"person_num": 4, "person_info": [{"location": {"top": 329.16717529297, "height": 398.73376464844, "score": 0.99482369422913, "left": 83.935195922852, "width": 184.01873779297}, "body_parts": {"left_ear": {"y": 386.134765625, "x": 231.357421875, "score": 0.82972419261932}, "left_wrist": {"y": 522.169921875, "x": 246.904296875, "score": 0.83682531118393}, "top_head": {"y": 347.267578125, "x": 215.810546875, "score": 0.83453011512756}, "left_shoulder": {"y": 432.775390625, "x": 231.357421875, "score": 0.82867068052292}, "right_mouth_corner": {"y": 401.681640625, "x": 204.150390625, "score": 0.85599774122238}, "left_elbow": {"y": 479.416015625, "x": 243.017578125, "score": 0.84861755371094}, "left_mouth_corner": {"y": 401.681640625, "x": 219.697265625, "score": 0.86684691905975}, "right_knee": {"y": 603.791015625, "x": 161.396484375, "score": 0.75707840919495}, "right_hip": {"y": 529.943359375, "x": 141.962890625, "score": 0.79752606153488}, "neck": {"y": 413.341796875, "x": 200.263671875, "score": 0.80784571170807}, "left_knee": {"y": 599.904296875, "x": 176.943359375, "score": 0.77508634328842}, "right_wrist": {"y": 506.623046875, "x": 106.982421875, "score": 0.87072920799255}, "right_ankle": {"y": 677.638671875, "x": 169.169921875, "score": 0.81904417276382}, "left_eye": {"y": 382.248046875, "x": 223.583984375, "score": 0.90387237071991}, "left_ankle": {"y": 665.978515625, "x": 165.283203125, "score": 0.62612092494965}, "right_elbow": {"y": 463.869140625, "x": 122.529296875, "score": 0.83316296339035}, "left_hip": {"y": 533.830078125, "x": 180.830078125, "score": 0.79427003860474}, "nose": {"y": 393.908203125, "x": 211.923828125, "score": 0.89168190956116}, "right_ear": {"y": 378.361328125, "x": 184.716796875, "score": 0.857102394104}, "right_shoulder": {"y": 417.228515625, "x": 157.509765625, "score": 0.80837500095367}, "right_eye": {"y": 382.248046875, "x": 204.150390625, "score": 0.86407351493835}}}, {"location": {"top": 102.56463623047, "height": 599.99090576172, "score": 0.99173533916473, "left": 130.89923095703, "width": 246.42929077148}, "body_parts": {"left_ear": {"y": 170.5546875, "x": 315.0234375, "score": 0.88487130403519}, "left_wrist": {"y": 416.6484375, "x": 350.1796875, "score": 0.66441202163696}, "top_head": {"y": 123.6796875, "x": 291.5859375, "score": 0.86020267009735}, "left_shoulder": {"y": 246.7265625, "x": 344.3203125, "score": 0.87362891435623}, "right_mouth_corner": {"y": 188.1328125, "x": 279.8671875, "score": 0.90730309486389}, "left_elbow": {"y": 328.7578125, "x": 356.0390625, "score": 0.81442075967789}, "left_mouth_corner": {"y": 188.1328125, "x": 297.4453125, "score": 0.91256886720657}, "right_knee": {"y": 539.6953125, "x": 256.4296875, "score": 0.62648755311966}, "right_hip": {"y": 416.6484375, "x": 256.4296875, "score": 0.70029890537262}, "neck": {"y": 211.5703125, "x": 291.5859375, "score": 0.90270125865936}, "left_knee": {"y": 539.6953125, "x": 320.8828125, "score": 0.59291833639145}, "right_wrist": {"y": 387.3515625, "x": 162.6796875, "score": 0.86518681049347}, "right_ankle": {"y": 639.3046875, "x": 244.7109375, "score": 0.71336472034454}, "left_eye": {"y": 164.6953125, "x": 297.4453125, "score": 0.92144113779068}, "left_ankle": {"y": 645.1640625, "x": 297.4453125, "score": 0.68017560243607}, "right_elbow": {"y": 328.7578125, "x": 197.8359375, "score": 0.80988317728043}, "left_hip": {"y": 422.5078125, "x": 320.8828125, "score": 0.7311646938324}, "nose": {"y": 176.4140625, "x": 285.7265625, "score": 0.91195154190063}, "right_ear": {"y": 164.6953125, "x": 262.2890625, "score": 0.9107311964035}, "right_shoulder": {"y": 235.0078125, "x": 227.1328125, "score": 0.88326698541641}, "right_eye": {"y": 164.6953125, "x": 279.8671875, "score": 0.90164983272552}}}, {"location": {"top": 296.86605834961, "height": 420.52432250977, "score": 0.97877311706543, "left": 363.30679321289, "width": 149.34535217285}, "body_parts": {"left_ear": {"y": 356.4365234375, "x": 464.2236328125, "score": 0.89165931940079}, "left_wrist": {"y": 520.8896484375, "x": 480.6689453125, "score": 0.85524916648865}, "top_head": {"y": 315.3232421875, "x": 443.6669921875, "score": 0.85186338424683}, "left_shoulder": {"y": 409.8837890625, "x": 472.4462890625, "score": 0.81712436676025}, "right_mouth_corner": {"y": 372.8818359375, "x": 427.2216796875, "score": 0.88265591859818}, "left_elbow": {"y": 467.4423828125, "x": 493.0029296875, "score": 0.82253921031952}, "left_mouth_corner": {"y": 372.8818359375, "x": 443.6669921875, "score": 0.86625397205353}, "right_knee": {"y": 603.1162109375, "x": 410.7763671875, "score": 0.8492546081543}, "right_hip": {"y": 525.0009765625, "x": 410.7763671875, "score": 0.8053075671196}, "neck": {"y": 389.3271484375, "x": 439.5556640625, "score": 0.86626297235489}, "left_knee": {"y": 607.2275390625, "x": 443.6669921875, "score": 0.87249583005905}, "right_wrist": {"y": 500.3330078125, "x": 381.9970703125, "score": 0.81565093994141}, "right_ankle": {"y": 664.7861328125, "x": 418.9990234375, "score": 0.84910094738007}, "left_eye": {"y": 352.3251953125, "x": 447.7783203125, "score": 0.90972018241882}, "left_ankle": {"y": 668.8974609375, "x": 443.6669921875, "score": 0.82913535833359}, "right_elbow": {"y": 455.1083984375, "x": 381.9970703125, "score": 0.82046729326248}, "left_hip": {"y": 529.1123046875, "x": 451.8896484375, "score": 0.81305986642838}, "nose": {"y": 360.5478515625, "x": 435.4443359375, "score": 0.86751049757004}, "right_ear": {"y": 352.3251953125, "x": 414.8876953125, "score": 0.84271240234375}, "right_shoulder": {"y": 405.7724609375, "x": 402.5537109375, "score": 0.84357106685638}, "right_eye": {"y": 352.3251953125, "x": 427.2216796875, "score": 0.90207880735397}}}, {"location": {"top": 303.25152587891, "height": 405.08908081055, "score": 0.96694123744965, "left": 265.65853881836, "width": 123.73851776123}, "body_parts": {"left_ear": {"y": 361.1396484375, "x": 368.5283203125, "score": 0.81161600351334}, "left_wrist": {"y": 452.1064453125, "x": 380.3935546875, "score": 0.33833676576614}, "top_head": {"y": 325.5439453125, "x": 340.8427734375, "score": 0.83566093444824}, "left_shoulder": {"y": 404.6455078125, "x": 364.5732421875, "score": 0.78162997961044}, "right_mouth_corner": {"y": 380.9150390625, "x": 336.8876953125, "score": 0.89588439464569}, "left_elbow": {"y": 448.1513671875, "x": 376.4384765625, "score": 0.40899315476418}, "left_mouth_corner": {"y": 380.9150390625, "x": 352.7080078125, "score": 0.88183057308197}, "right_knee": {"y": 598.4443359375, "x": 305.2470703125, "score": 0.80287802219391}, "right_hip": {"y": 519.3427734375, "x": 305.2470703125, "score": 0.79447478055954}, "neck": {"y": 392.7802734375, "x": 340.8427734375, "score": 0.80035603046417}, "left_knee": {"y": 590.5341796875, "x": 352.7080078125, "score": 0.85939663648605}, "right_wrist": {"y": 460.0166015625, "x": 325.0224609375, "score": 0.84673351049423}, "right_ankle": {"y": 661.7255859375, "x": 305.2470703125, "score": 0.84790563583374}, "left_eye": {"y": 361.1396484375, "x": 352.7080078125, "score": 0.87702542543411}, "left_ankle": {"y": 653.8154296875, "x": 352.7080078125, "score": 0.8559245467186}, "right_elbow": {"y": 463.9716796875, "x": 285.4716796875, "score": 0.78342944383621}, "left_hip": {"y": 519.3427734375, "x": 348.7529296875, "score": 0.80210018157959}, "nose": {"y": 373.0048828125, "x": 344.7978515625, "score": 0.90877413749695}, "right_ear": {"y": 365.0947265625, "x": 317.1123046875, "score": 0.86903619766235}, "right_shoulder": {"y": 416.5107421875, "x": 305.2470703125, "score": 0.76286625862122}, "right_eye": {"y": 361.1396484375, "x": 332.9326171875, "score": 0.89724415540695}}}]}, "code": 0}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"message": {"type": "string"}, "data": {"type": "object", "properties": {"person_num": {"type": "integer"}, "person_info": {"type": "array", "items": {"type": "object", "properties": {"location": {"type": "object", "properties": {"top": {"type": "number"}, "height": {"type": "number"}, "score": {"type": "number"}, "left": {"type": "number"}, "width": {"type": "number"}}, "required": ["height", "left", "score", "top", "width"]}, "body_parts": {"type": "object", "properties": {"left_ear": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "left_wrist": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "top_head": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "left_shoulder": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "right_mouth_corner": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "left_elbow": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "left_mouth_corner": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "right_knee": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "right_hip": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "neck": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "left_knee": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "right_wrist": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "right_ankle": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "left_eye": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "left_ankle": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "right_elbow": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "left_hip": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "nose": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "right_ear": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "right_shoulder": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}, "right_eye": {"type": "object", "properties": {"y": {"type": "number"}, "x": {"type": "number"}, "score": {"type": "number"}}, "required": ["score", "x", "y"]}}, "required": ["left_ankle", "left_ear", "left_elbow", "left_eye", "left_hip", "left_knee", "left_mouth_corner", "left_shoulder", "left_wrist", "neck", "nose", "right_ankle", "right_ear", "right_elbow", "right_eye", "right_hip", "right_knee", "right_mouth_corner", "right_shoulder", "right_wrist", "top_head"]}}, "required": ["body_parts", "location"]}}}, "required": ["person_info", "person_num"]}, "code": {"type": "integer"}}, "required": ["code", "data", "message"]}
22eec1a2-5656-4f15-83cf-981391b35e6b/f78cf375-10d4-4c96-8f5f-20d03496bb23/0/0
thai-national-id
Thai National ID Card OCR -> Doc: https://docs.iapp.co.th/thai-national-id-card-version-3-api-documentation and Postman Example: https://www.getpostman.com/collections/b643e60f146e6f37858c
8.3
Back Card (v3.5)
Back Card OCR
200
New Example
{"back_number": "JT0-1740123-05", "back_number_status": 1, "detection_score": 0.987130731344223, "error_message": "", "process_time": 2.107041120529175, "request_id": "1dcc2bdb-bcba-43e4-810e-5ca183b44566#81807"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"back_number": {"type": "string"}, "back_number_status": {"type": "integer"}, "detection_score": {"type": "number"}, "error_message": {"type": "string"}, "process_time": {"type": "number"}, "request_id": {"type": "string"}}, "required": ["back_number", "back_number_status", "detection_score", "error_message", "process_time", "request_id"]}
22eec1a2-5656-4f15-83cf-981391b35e6b/2ea7d7dd-60d2-43c2-ba8e-57824618354a/0/0
thai-national-id
Thai National ID Card OCR -> Doc: https://docs.iapp.co.th/thai-national-id-card-version-3-api-documentation and Postman Example: https://www.getpostman.com/collections/b643e60f146e6f37858c
8.3
Front Card (v3.5)
Front Card OCR
200
New Example
{"address": "33/349 \u0e2b\u0e21\u0e39\u0e48\u0e17\u0e35\u0e48 7 \u0e15.\u0e2b\u0e19\u0e2d\u0e07\u0e1b\u0e23\u0e37\u0e2d \u0e2d.\u0e1a\u0e32\u0e07\u0e25\u0e30\u0e21\u0e38\u0e07 \u0e08.\u0e0a\u0e25\u0e1a\u0e38\u0e23\u0e35", "alley": "", "detection_score": 0.9819779147704442, "district": "\u0e1a\u0e32\u0e07\u0e25\u0e30\u0e21\u0e38\u0e07", "en_dob": "22 Mar 1957", "en_expire": "21 Jan 2025", "en_fname": "Bunyang", "en_init": "Mrs.", "en_issue": "25 Jul 2016", "en_lname": "Lopez", "en_name": "Mrs. Bunyang Lopez", "error_message": "", "face": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCACwAJYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7IvvjD8OtEkk0298baQJOBIr6nCpGRnOC3pioZvjx8IIojG/xD0cbV5A1a3x0x/fr8MfhF+xPrH/BQb/gqVr/AOzpZ+LW07zrLTZxPLqT26jd/Ztt95Ypf+fnP3e2e2D+i9v/AMGaWq/Kbn44xEk/Nt8Zz9P/AAV1TkmzlVC8LNn1jb/tD/BSGIK/xJ0VSDnnWLbt/wBtP84q6n7UHwOS3O/4l6EMMBn+2rbnGOf9ZXyXD/wZpWoP+k/Ggn5udvjObp/4LKtw/wDBmt4cAIn+MU59NvjSb/5W1LtaxrSpOlsz6em/as+Agkff8UtC5xk/23adT/21rOuP2tf2e4rY25+KWhBt2FI1y047/wDPWvn6L/gzY+HgY+d8Wb4jH8PjSXr/AOC2rdt/wZtfCED/AEv4o6oxx/D40k6/+C6lTSgxVKKmeyN+2R+zysrD/ha2gZByc65adPT/AFtRXH7bn7NyTBn+K+gDyvm/5D1nzj/ttXlkH/Bm58Bwq+f8SNZPPzbfGb9P/BfVu3/4M3/2ahj7T8QPEB+bnb4ybp/4L60c7nnyyxyfx/gd+/7cn7M8km+T4t+H13Nk51+y6E/9dqhP7dn7MDENJ8Y/DigjP/IwWX5f6+uRh/4M4f2TuftHjjxMfTb4zb/5Aq3F/wAGcf7F4b994v8AFhGO3jM//INV7XTYUcpgndyOhb9vz9lGCfy7j4z+HgBwD/wkVh9f+e9UJ/8AgoR+yfvd5fjR4cyO3/CR2HT/AL/1Bbf8Gc37CoH+l+KPGROP4PGf/wBxVbh/4M6P+CfQC/aPEHjgnPzbfGY/+QqSqNFf2XC9+Yzr7/gol+yCtoFHxr8O7hyR/wAJJp/Ax/18Vk3X/BRD9j5Zgz/G3w2waPnPiXTxz/4EemBXZwf8GdX/AATb+U3Gs+Pzz823xovT/wAA6txf8Gdn/BMAZ8/UviKfTHjRf/kSrjXlF3GssgvtHnVx/wAFJv2OeZx8cPDgG0DafEunemP+fimj/gpl+xdGqiX44eGmAY7kXxPp3PH/AF816nF/wZ3/APBKMN++ufiWRj+Hxon/AMi1ai/4M8/+CRiAFx8T2OOc+NI8Z/8AAWl7Z9hrLKad+Y8euf8AgqF+xYXwvxn0DCYwB4l04+//AD81W/4eofsXQ5U/FvRWyfm2eJNO5x0/5ea9xj/4M/v+CRCYzZfElsH+LxknP/ktViP/AINDf+CQsYAOhfEFsH+LxgOf/Jej20rWD+y6XNe58+3P/BWD9jFHUp8TtJHynGPEWnED/wAmaK+iY/8Ag0Z/4JApnd4V8dtn18XD/wCMUUvayD+y6Xdn5df8EdZBB/wX91IytnOjaSBtH/T7oVf1Cc5r+Xf/AIJQuLH/AIL/AF8cbd2k6OMIMf8AL7of+Ff1EVkelHZBRRRQMKKKKADpSb0/vUp5FfnR/wAF7v8Agt1Z/wDBKv4TadoXwn0bTNe+Inigyx6Xb3V/CYtNiUsrXEsIfzGwwwBt25BBPGKAPv8A8WfEHwF4CgjufHPjbSNGimz5Umq6lFbq+Bk4MjDOB6V5hr//AAUW/YN8MSPFrv7YHw7t3jOHVvFlqSDz6OfQ1/JL+1j/AMFyv+Cl37Xvi6TxH48/aZ1/S7QSu1lonhy8aztLVWGCqpGRnjjJr5z1b9oD4467M1xrPxe8S3Lucs02tztk/i3vQB/aRH/wVj/4Jryz/Zh+2x8PFf8A2/EUSj8ycV6Z8J/2m/2dPjvAbj4L/HPwn4pAbaV0LX7e5YHBOCqOSOFY8jop9DX8Lb/FL4js3mf8J7rO49/7Tl/+Kr1P9mz/AIKTftv/ALJPiqz8WfAr9pLxXo8tpdJObMatJJbTsoZdskLkpIpDsCCMfMaAP7iQynoaAQelfkP/AMERf+DmvTP2/viNpv7Ln7TngLTvDPjW40pfsPiO01OCGz1e6VnDp5UrqySMvllVj35bfwoxX66200VxCs8EqujqCjo2QQRwc96AJKKKKACiiigAooooA/lz/wCCZci2X/Bfy5KsFDaZoo4Gc/6bov8AhX9Rlfy2f8E5ma3/AOC+jELgnT9EyCc/8vujV/UnRawou8UFFFFAwooooA5L48fFbQvgd8EvF3xl8SXyW9h4V8N3uq3UzrkKkEDyHjIz93GMjPrX8O/7Uf7R/wATP2pfjHrfxc+Kfi671jUNS1K6mWe7cny0luZZiigk7V3SsQo4Ga/rZ/4OKPiJ/wAK4/4I8/GW+QSB9T0WHTEMTEEedcxqeR22hh+Nfxws4IIA696AG0UUUAFFFFAF3w7r2teFtatfEnhvVrmw1CwuEnsr2zmMcsEqHcrqykFWBAII6EV/Vj/wasft/eNv2yf+Cfr/AA/+L/jmXXPFfwz1T+x5Lq8XNw+nlA1qZJCxMpCZTcQD8gzk5J/lCVtvav22/wCDLD4sNoH7RPxe+F0qfJq/h3S71DlvvR3ZhIwOP+W46+lAH9IoOaKAMDFFABRRRQAUUUUAfyy/sGyCD/gvhG0OCDZ6GOTn/l+0iv6mq/lf/YxAtP8AgvVbB1IzbaDwB/0/aTX9UFAlsFFFFAwooooA/NT/AIOt/E0ui/8ABInxbp8cgAvte0uFhnqDK7f+yV/JdX9Zv/B1x4Q1rxJ/wSS8V6jpUHmR6frmmXFzj+GNZJAT+brX8mVABRRRQAUUUUAFfpr/AMGo3jrUPB//AAUxuLK2n2w6n4QSCZCThj/bOlgHjvhm/M1+ZVfpB/wa3eEtW8T/APBTKC40+1d4rHw9BLcSBSQg/tnTCM/gG/I0Af1uUU1GLZyMc06gAooooAKKKKAP5Xf2XJBp/wDwXssSi7Q0OgDCnP8Ay+6V6/Sv6oq/lY+Ah+xf8F6tMCqIsp4e4P8A1/aZ61/VPRqKPwoKKKKBhRRRQB8gf8F4bPwRqX/BJ74yWHjzU5bO0fwy32eeGJnIuFdWjUhecFhjPQZr+MKv7LP+Dgn4eT/En/gkd8YdIsopZJbLQVvlSEZJ8qRSe44wSa/jToAKKKKACiiigAr9Lf8Ag2R/ax/Zs/ZD/a41zxh+0D4h1O0m1+10zSPDsGm6XJc+bcNfxOd5XhFyiDJ9a/NKvdv+CbPw3vfin+2f4A8M2NtcSMPFelSyC2j3Mqf2jaoTj0+egD+4GxuYby1ju7diY5UDoSMZBGalqHTbRbDT4LJDkQwqgJ9gB/SpqACiiigAooooA/lL+DmpLP8A8F2tFu4iUDt4eHz9/wDTtN9a/q0r+Tz4St9k/wCC5Ph7jdun8Oj0/wCX7T6/rDByM1rXio1pJdzlwM5VMHTk92l+QUUUVkdQUUUUAcb+0H8OLT4vfArxj8Lr20inj8QeGr2wMMykqxkhZRkAg9SK/hf+NHw01z4RfFDXvh54h0x7W50nV7q1MToV4ineLIzzjKH8q/vSIyMGv5r/APg7C/4JUeHv2c9a0X9tj4ceILiTT/E2r3Vlrmm3KSP5NxNcTXKur8gL+9K4JHQYoA/FOiiigAooooAVcc5Ga/Xf/g0P/Zam+MP7Yniz4v32iQTWPg/SdPMc9xCW2zHULefCnOAdsGec9q/Jbwvod54n8R2PhuwGZtQu47eL5Sfmdgo4HJ5Pav61f+DZ3/gnpo37E3/BPzSfHd3rk1/4h+J8UOuaqWR447aNlxFCqN6LyWxzmgD9F16Z9aWiigAooooAKKKKAP5PfDQjsf8Agud4ZU5INz4bxjn/AJfrCv6wl6D6V/J1ek6f/wAFz/CgIKlrzwyPk/6/rKv6xV6D6VrX/jS9Tjy9JYGkv7q/IKKKKyOwKKKKACvgT/g5O/Zl8V/tPf8ABKvxvoHgbwxJq2raA8Os21rAf3m2BtzlRg7iFycV991yPx91Tw7onwO8Yap4r1OKy02HwzfNfXc/3Io/IcMx9gKAP4P/ABBoWq+F9bvfDWvWElrfafdSW15bTJh4ZUYq6MOxBBH4VRr2v/go7deEb/8Aby+L9/4D1uLUdJn+IWqS2d7AuElDXDliOnAYsPfFeKUAFFFFAH0f/wAElP2avGf7V3/BQb4Z/Cfwb4Xm1Ut4lt73U44ztWG0gcSSyu2DtVQuSa/tA+A3w+i+FHwW8KfDSK2WEaD4dtLExI+4KY4VUgHvyDzX8sn/AAabfEn4e/Dv/grRocfjnxAlhPrfh2+0zRA8ZIuLuWPCx5H3SecE1/WLCQyhg+4EZBz1oAfRRRQAUUUUAFFFFAH8nfjsrZ/8F1fCISRRm/8AC/PY/wCnWdf1iL0H0r+Tf41t9i/4LqeCsMEzqXhUZOOf9OtK/rIXoPpWtf8AjS9Tjy//AHGn/hX5BRRRWR2BRRketNkmhhQyTSqijqzNgUAOr83f+Djz/gpp4H/Y0/Yu8RfBezvTJ4x+I/h69sNGW31CBGtkxsklZGkEh+8QNqnnrUP/AAVl/wCDiP8AZN/Yl8HeM/hh8Jvitaax8V9Ltvs1hpdnppvYra7dWwZCJEX5MAnk4yOD0r+XH9pf9qv47ftd/EOb4n/H74h33iHVpHmMc15ISsKyTPKyIvRF3yMcD29KAOI8Sa9feKPEF/4l1ScyXOo3ktzcyOclpJHLsSfck1QoooAKKKKAPU/2Jf2htY/ZR/au8B/tDaJLKs3hXxJbXzrEwBeNHBdfmIHK5HPFf2Kf8Eqf+Cg/w3/4KO/so6T8a/Apmju7JYtN8Q211cW7yR3qQxmRsQyPtVixI3bTweBiv4mUO1s5r6U/4J0f8FSP2rP+CavxBl8V/s7/ABGl06w1Ke3bX9GuLYXFrfRxzI5VomIGSqlcgq2GIyM5oA/tnor45/4J6f8ABcL9gT/goH4e0LSvAfx10nT/ABvqVqftPg7W8WF556KnmLFHI7BxlsqFdyQD12nH2KHRhlWBHqKAFopAynoRS0AFFFFAH8nH7TZW1/4LteCAoyP7V8KD0/5fbWv6x16D6V/Jz+2mfsn/AAXc8BHO/dq/hLpx/wAvtvX9YF9qFjpVhLqWpXccFvbxNJPNM4VY0UZLEnoABnNaVXeozkwP+5U/REpYA4Jpss8UMbSyNhVBLHHQV+YH/BT3/g5r/ZK/ZA+H15afs2eNvCPxI8cM7wWuj2mrztHAyuyF5HigdBtKk7Wdc44PNfiH+2Z/wclf8FOv2urnUtNg+MD+BfD9/DJb/wBh+D8wbYWKnBn/ANYWwuNwKnBPrWZ1n9A/7f3/AAcN/sL/ALB2lanbazJ4g8T+I7K5ktYdC0zR5ohJOqg7TNKqoB8w5zX4Tf8ABST/AIOYP2rf26I18M+BfDbfDzQomicQ6R4kvhPI64JLGOZEwWH908V+b2p6xqetXsup61qc93dTyF5ri5maR5GPVmZiSSfU1Vbr1oAs6pq2pazfzarrGoz3d1cSGSe4uZWkeRj1ZmYkk+5qrRRQAUUUUAFFFFABSoQpzmkooAs2Gp3el3cWo6bdy29xA4eCaByjxsDkEEcgj1Ffo9/wTj/4ObP20v2E7+fTPHGlH4peHbm2WI6b4m8Vaj59uUjCI0Msk0scf3VyPKORkArX5sUUAf1w/sCf8HNH/BPv9uK90fwS6eJvBfjHVryO0Xw9qukS3UfnurMFS5t0ZGX5SAzBOoyBX6LwXUFxEs8L5VgCpweQa/gLhlMOJY5WV1bKFTgg+tfZf7IH/Bfb/gp/+xpqWmr4I/aP1HxFoumwpBH4Z8aM2oWbQqSRH8zCRepAKuCBgdAKAP7KxKhOM9s0V+NX7AH/AAdyfAX44eGr21/bE0Tw38Odbs9zwNDqd7JBeJvAG0C1YIQCON5JwTgdigD80v8AgoPbyaJ/wXi+HtvcuC39s+D8+X73sJr9xf8Ag5o+OPiL4Hf8EgPibqXhDxHdaXqOu/2fokN1ZXHlyeXdXSJMgIGRuhEinGDgnkV+H/8AwVItE0H/AIL3fDqGPKBta8G5yck5vYv8K/ST/g8n+NUGg/sUaN8EUQ+frXi/R7lm8vI2BNSbr25gFa1mnVk13OXA/wC50/RH80M0nmNnOfXNMp0gwfwptZHUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAD4zgZz+GaKRX29B+NFAH6h/8FfIktv+C9vw3kVic6x4NO9va9jr03/g8m+Nupa9+3foPwSg1XfYaL4B0e7ns1kJC3LS6m24jGA3lzr36EV5n/wWMUQ/8F1fhvcMDg6n4RIB7YvI69O/4Lp/8Ej/APgqT+2z/wAFQPiR8efhF+y34k1zwnfT2Fn4e1HzIhHJb21lDBlMsDsLo7D2bNaVVaqzlwP+50/RH42Oct1pK+3k/wCDdD/gsXK2P+GNNdXn+KeEf+zVNH/wbg/8FipM/wDGIGrLj+9dwj/2aszqPhuivuyL/g2y/wCCxcv/ADaVfrxn5r+Ef1qeL/g2l/4LFy4/4xVuFz/e1KIY/WgD4Mor76j/AODZX/gsZIAf+GYSMn+LVohj9anj/wCDYj/gsZJn/jGyJcf3tZiFAH5/UV+hEX/Br3/wWMlGf+GeLNfZtdiFTx/8Gtn/AAWNkx/xYLTFyP4vEEQx+lAH54UV+i8X/Bq7/wAFjZcf8WP0Vc/3/EkQx+lTR/8ABqh/wWNkIH/CmfD65OPm8URD/wBloA/OKiv0kj/4NQv+Cx0mf+LR+GFx/e8VxD/2WrEX/Bpn/wAFjpRn/hWHhFeOj+L4h/7LQB+adFfpnH/waS/8Fj5CB/wrrwWuR/F4yj4/8cqxH/waL/8ABY1yN3gjwIoI6nxrHx/45QB+YlFfqDF/waH/APBYJ/8AWeFfAac/9Dih/wDZKnj/AODQf/grs2d+ieA19P8AirUP/slAH5b0V+qEf/Bn/wD8FaGzvtfAa+n/ABU4P/stFAH/2Q==", "gender": "Female", "home_address": "33/349 \u0e2b\u0e21\u0e39\u0e48\u0e17\u0e35\u0e48 7", "house_no": "33/349", "id_number": "3411700830334", "id_number_status": 1, "lane": "", "postal_code": "20150", "process_time": 3.3079464435577393, "province": "\u0e0a\u0e25\u0e1a\u0e38\u0e23\u0e35", "religion": "", "request_id": null, "road": "", "sub_district": "\u0e2b\u0e19\u0e2d\u0e07\u0e1b\u0e23\u0e37\u0e2d", "th_dob": "22 \u0e21\u0e35.\u0e04. 2500", "th_expire": "21 \u0e21.\u0e04. 2568", "th_fname": "\u0e1a\u0e38\u0e0d\u0e22\u0e31\u0e07", "th_init": "\u0e19\u0e32\u0e07", "th_issue": "25 \u0e01.\u0e04. 2559", "th_lname": "\u0e42\u0e25\u0e40\u0e1b\u0e0a", "th_name": "\u0e19\u0e32\u0e07 \u0e1a\u0e38\u0e0d\u0e22\u0e31\u0e07 \u0e42\u0e25\u0e40\u0e1b\u0e0a", "village": "", "village_no": "7"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"address": {"type": "string"}, "alley": {"type": "string"}, "detection_score": {"type": "number"}, "district": {"type": "string"}, "en_dob": {"type": "string"}, "en_expire": {"type": "string"}, "en_fname": {"type": "string"}, "en_init": {"type": "string"}, "en_issue": {"type": "string"}, "en_lname": {"type": "string"}, "en_name": {"type": "string"}, "error_message": {"type": "string"}, "face": {"type": "string"}, "gender": {"type": "string"}, "home_address": {"type": "string"}, "house_no": {"type": "string"}, "id_number": {"type": "string"}, "id_number_status": {"type": "integer"}, "lane": {"type": "string"}, "postal_code": {"type": "string"}, "process_time": {"type": "number"}, "province": {"type": "string"}, "religion": {"type": "string"}, "request_id": {"type": "null"}, "road": {"type": "string"}, "sub_district": {"type": "string"}, "th_dob": {"type": "string"}, "th_expire": {"type": "string"}, "th_fname": {"type": "string"}, "th_init": {"type": "string"}, "th_issue": {"type": "string"}, "th_lname": {"type": "string"}, "th_name": {"type": "string"}, "village": {"type": "string"}, "village_no": {"type": "string"}}, "required": ["address", "alley", "detection_score", "district", "en_dob", "en_expire", "en_fname", "en_init", "en_issue", "en_lname", "en_name", "error_message", "face", "gender", "home_address", "house_no", "id_number", "id_number_status", "lane", "postal_code", "process_time", "province", "religion", "request_id", "road", "sub_district", "th_dob", "th_expire", "th_fname", "th_init", "th_issue", "th_lname", "th_name", "village", "village_no"]}
66faa20d-2bf4-4a30-beb2-16bfd2fc05a0/6d265551-d077-4d13-9794-c07651b0ff68/0/0
Automatic removal of watermarks or handwritten text
Automatically detects handwritten or watermarked text in document images and removes it See the functional effects
8.4
Automatic removal of watermarks or handwritten text
Support jpg, png, BMP, pdf, tiff, single frame gif, etc., image size not more than 10M
200
Response
{"code": "200", "image_result": "https://seaout.oss-accelerate.aliyuncs.com/temp/xxxxxxxxxxxxxx.png", "msg": "Success"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"code": {"type": "string"}, "image_result": {"type": "string"}, "msg": {"type": "string"}}, "required": ["code", "image_result", "msg"]}
a1e468a5-1dfb-45e1-b678-6d37fbade277/508645e9-ec03-4600-8c62-d03a43e3f492/0/0
Face Recognition
Card2G Face Recognition Services: Unleashing the Power of Secure and Seamless Identification
7
face verification file upload
Card2G's Face Verification API ensures secure matching of photo IDs, determining if two faces belong to the same person. Supports images up to 5MB, ranging from 50 to 4000 pixels
200
New Example
{"error": 0, "message": "The two faces belong to the same person.", "SimilarPercent": 60, "execution_time": 0.4952874183654785}
{"error": {"type": "integer"}, "message": {"type": "string"}, "SimilarPercent": {"type": "integer"}, "execution_time": {"type": "number"}}
8ddaec23-fb4d-45fe-90a5-e0d2b749c8b8/34492825-39c4-4403-9402-268d70795e46/0/0
AI Face Slimming
Based on AI algorithm to automatically detect and analyze the five features of the face, it generates images of the face after the five features are adjusted and slimmed down. When the image contains more than one person, up to 3 faces can be processed.
null
AI Face Slimming
AI Face Slimming
401
Example
{"message": "Invalid API key in request"}
{"message": {"type": "String", "required": true, "example": "Invalid API key in request", "description": "Error Message."}}
8ddaec23-fb4d-45fe-90a5-e0d2b749c8b8/34492825-39c4-4403-9402-268d70795e46/1/0
AI Face Slimming
Based on AI algorithm to automatically detect and analyze the five features of the face, it generates images of the face after the five features are adjusted and slimmed down. When the image contains more than one person, up to 3 faces can be processed.
null
AI Face Slimming
AI Face Slimming
200
Success
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 0, "data": {"image_url": "Temporary address"}}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image_url": {"type": "String", "required": false, "description": "Resulting image URL address. **Note**: The URL address is a temporary address, valid for 1 day, after which it will not be accessible."}}}}
8ddaec23-fb4d-45fe-90a5-e0d2b749c8b8/34492825-39c4-4403-9402-268d70795e46/1/1
AI Face Slimming
Based on AI algorithm to automatically detect and analyze the five features of the face, it generates images of the face after the five features are adjusted and slimmed down. When the image contains more than one person, up to 3 faces can be processed.
null
AI Face Slimming
AI Face Slimming
200
Error
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 400, "error_code_str": "ERROR_PARAMETERS", "error_msg": "image cannot be empty"}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image_url": {"type": "String", "required": false, "description": "Resulting image URL address. **Note**: The URL address is a temporary address, valid for 1 day, after which it will not be accessible."}}}}
3b769acf-5d79-4078-b570-a9abc63c7d6e/be1a40e2-8308-466a-a83b-f6bedfdfc984/0/0
AI Makeup
Based on AI algorithm to simulate realistic makeup effect, it further enhances the face beautification effect by adding lipstick, highlighter, whole makeup and other makeup materials. Users can choose different beauty types and match with personalized beauty materials to complete the makeup look.
6.8
AI Makeup
AI Makeup
401
Example
{"message": "Invalid API key in request"}
{"message": {"type": "String", "required": true, "example": "Invalid API key in request", "description": "Error Message."}}
3b769acf-5d79-4078-b570-a9abc63c7d6e/be1a40e2-8308-466a-a83b-f6bedfdfc984/1/0
AI Makeup
Based on AI algorithm to simulate realistic makeup effect, it further enhances the face beautification effect by adding lipstick, highlighter, whole makeup and other makeup materials. Users can choose different beauty types and match with personalized beauty materials to complete the makeup look.
6.8
AI Makeup
AI Makeup
200
Success
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 0, "data": {"image_url": "Temporary address"}}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image_url": {"type": "String", "required": false, "description": "Resulting image URL address. **Note**: The URL address is a temporary address, valid for 1 day, after which it will not be accessible."}}}}
3b769acf-5d79-4078-b570-a9abc63c7d6e/be1a40e2-8308-466a-a83b-f6bedfdfc984/1/1
AI Makeup
Based on AI algorithm to simulate realistic makeup effect, it further enhances the face beautification effect by adding lipstick, highlighter, whole makeup and other makeup materials. Users can choose different beauty types and match with personalized beauty materials to complete the makeup look.
6.8
AI Makeup
AI Makeup
200
Error
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 400, "error_code_str": "ERROR_PARAMETERS", "error_msg": "image cannot be empty"}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image_url": {"type": "String", "required": false, "description": "Resulting image URL address. **Note**: The URL address is a temporary address, valid for 1 day, after which it will not be accessible."}}}}
93ccda0b-29b8-4ee2-9c9c-77502642f95b/5c62348b-5e6f-452c-b1e3-0afa82f5751a/0/0
APIvalidFace
The APIvalidFace validates sent faces by comparing them with registered faces, with the return being a "True" or "False"
null
Delete face image
This endpoint delete face image
200
New Example
{"deleted_face": ""}
{"type": "object", "properties": {"deleted_face": {"type": "string"}}}
93ccda0b-29b8-4ee2-9c9c-77502642f95b/4d7a72e9-1706-416f-9fe9-49a459e6bbba/0/0
APIvalidFace
The APIvalidFace validates sent faces by comparing them with registered faces, with the return being a "True" or "False"
null
Face Recognition
This endpoint recognize the face image
200
New Example
{"know_face": "", "face_name": "", "base64_valid": ""}
{"type": "object", "properties": {"know_face": {"type": "string"}, "face_name": {"type": "string"}, "base64_valid": {"type": "string"}}}
93ccda0b-29b8-4ee2-9c9c-77502642f95b/91b3252f-d1a1-4293-9dc4-7f784a4aa9fd/0/0
APIvalidFace
The APIvalidFace validates sent faces by comparing them with registered faces, with the return being a "True" or "False"
null
Register of face image
This endpoint register face image
200
New Example
{"image_save": ""}
{"type": "object", "properties": {"image_save": {"type": "string"}}}
d52236fa-7ecf-4f92-8dd2-db4d922dcf9b/a0598b35-153c-4626-98ad-cfffaa44fee5/0/0
Photo retouching
Using advanced image processing technology, the input face picture is intelligently changed into beauty. It can help the beauty ability of cell phone manufacturers, beauty apps and other camera classes to achieve sharpening of skin, skin tone whitening, face slimming, adjustment of five features, spot and acne treatment in one click intelligently. Can also be applied to interactive entertainment and other scenarios, such as live streaming, short video, social networking platforms, easily enha...
null
Photo retouching
Photo retouching
401
Example
{"message": {"type": "String", "required": true, "example": "Invalid API key in request", "description": "Error Message."}}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"message": {"type": "object", "properties": {"type": {"type": "string"}, "required": {"type": "boolean"}, "example": {"type": "string"}, "description": {"type": "string"}}, "required": ["description", "example", "required", "type"]}}, "required": ["message"]}
d52236fa-7ecf-4f92-8dd2-db4d922dcf9b/a0598b35-153c-4626-98ad-cfffaa44fee5/1/0
Photo retouching
Using advanced image processing technology, the input face picture is intelligently changed into beauty. It can help the beauty ability of cell phone manufacturers, beauty apps and other camera classes to achieve sharpening of skin, skin tone whitening, face slimming, adjustment of five features, spot and acne treatment in one click intelligently. Can also be applied to interactive entertainment and other scenarios, such as live streaming, short video, social networking platforms, easily enha...
null
Photo retouching
Photo retouching
200
Success
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 0, "data": {"image": ""}}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image": {"type": "String", "required": false, "description": "The result image, returning the Base64 encoding of the image."}}}}
d52236fa-7ecf-4f92-8dd2-db4d922dcf9b/a0598b35-153c-4626-98ad-cfffaa44fee5/1/1
Photo retouching
Using advanced image processing technology, the input face picture is intelligently changed into beauty. It can help the beauty ability of cell phone manufacturers, beauty apps and other camera classes to achieve sharpening of skin, skin tone whitening, face slimming, adjustment of five features, spot and acne treatment in one click intelligently. Can also be applied to interactive entertainment and other scenarios, such as live streaming, short video, social networking platforms, easily enha...
null
Photo retouching
Photo retouching
200
Error
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 400, "error_code_str": "ERROR_PARAMETERS", "error_msg": "image cannot be empty"}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image": {"type": "String", "required": false, "description": "The result image, returning the Base64 encoding of the image."}}}}
639123be-c691-47a5-ad9b-6cd1d8f40189/de378bce-cd2e-494f-992a-b2a192cea636/0/0
Face and medical mask detection
This API detects faces and the presence of medical masks, identifies if masks are being worn correctly
0.1
Detect faces and med masks
200
OK Example
{"status": "success", "result": [{"box": {"bottom": 186, "left": 795, "right": 902, "top": 55}, "medmask": [{"confidence": 1, "name": "incorrect"}, {"confidence": 7.375238e-09, "name": "correct"}, {"confidence": 8.7846475e-12, "name": "none"}]}, {"box": {"bottom": 314, "left": 704, "right": 809, "top": 191}, "medmask": [{"confidence": 1, "name": "incorrect"}, {"confidence": 3.6062854e-08, "name": "correct"}, {"confidence": 1.4148969e-09, "name": "none"}]}, {"box": {"bottom": 275, "left": 47, "right": 156, "top": 147}, "medmask": [{"confidence": 1, "name": "correct"}, {"confidence": 3.4107838e-11, "name": "none"}, {"confidence": 1.5513642e-11, "name": "incorrect"}]}, {"box": {"bottom": 293, "left": 396, "right": 509, "top": 165}, "medmask": [{"confidence": 1, "name": "incorrect"}, {"confidence": 2.0485738e-08, "name": "correct"}, {"confidence": 1.912905e-10, "name": "none"}]}, {"box": {"bottom": 285, "left": 212, "right": 319, "top": 154}, "medmask": [{"confidence": 0.99999917, "name": "incorrect"}, {"confidence": 6.8569113e-07, "name": "correct"}, {"confidence": 9.8483575e-08, "name": "none"}]}, {"box": {"bottom": 338, "left": 592, "right": 690, "top": 215}, "medmask": [{"confidence": 1, "name": "correct"}, {"confidence": 1.4383935e-12, "name": "none"}, {"confidence": 2.6899996e-13, "name": "incorrect"}]}, {"box": {"bottom": 246, "left": 579, "right": 685, "top": 122}, "medmask": [{"confidence": 0.95955884, "name": "correct"}, {"confidence": 0.04041219, "name": "none"}, {"confidence": 2.9026376e-05, "name": "incorrect"}]}, {"box": {"bottom": 284, "left": 296, "right": 364, "top": 187}, "medmask": [{"confidence": 0.99989057, "name": "correct"}, {"confidence": 0.000104147104, "name": "incorrect"}, {"confidence": 5.2193473e-06, "name": "none"}]}, {"box": {"bottom": 283, "left": 1035, "right": 1136, "top": 154}, "medmask": [{"confidence": 0.68013155, "name": "correct"}, {"confidence": 0.29739606, "name": "incorrect"}, {"confidence": 0.022472344, "name": "none"}]}, {"box": {"bottom": 340, "left": 947, "right": 1014, "top": 219}, "medmask": [{"confidence": 0.99989855, "name": "incorrect"}, {"confidence": 0.000100513374, "name": "correct"}, {"confidence": 9.1663736e-07, "name": "none"}]}], "message": "10 faces detected"}
{"type": "object", "properties": {"status": {"type": "string"}, "result": {"type": "array", "items": {"type": "object", "properties": {"box": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}}, "medmask": {"type": "array", "items": {"type": "object", "properties": {"confidence": {"type": "number"}, "name": {"type": "string"}}}}}}}, "message": {"type": "string"}}}
c3b4bf30-f930-4094-b29c-ffb1b8d8af1b/56d50eec-e65b-4d99-8ea6-408d4da629bd/0/0
NSFW Image Classification
Use our Content Moderation API to flag possible inappropriate/ nude / adult content in your images.
8.4
NSFW Image Classification (Upload file)
Use our Content Moderation API to flag possible inappropriate content in your images.
200
New Example
[{"className": "Porn", "probability": 0.9929075241088867}, {"className": "Sexy", "probability": 0.002984800608828664}, {"className": "Hentai", "probability": 0.002632501535117626}, {"className": "Neutral", "probability": 0.0014369783457368612}, {"className": "Drawing", "probability": 3.809928966802545e-05}]
{"type": "array", "items": {"type": "object", "properties": {"className": {"type": "string"}, "probability": {"type": "number"}}}}
c3b4bf30-f930-4094-b29c-ffb1b8d8af1b/c5f5806e-db74-4ecf-a8a6-0664f6e8930d/0/0
NSFW Image Classification
Use our Content Moderation API to flag possible inappropriate/ nude / adult content in your images.
8.4
NSFW Image Classification
Use our Content Moderation API to flag possible inappropriate content in your images.
200
Response
[{"className": "Porn", "probability": 0.9929075241088867}, {"className": "Sexy", "probability": 0.002984800608828664}, {"className": "Hentai", "probability": 0.002632501535117626}, {"className": "Neutral", "probability": 0.0014369783457368612}, {"className": "Drawing", "probability": 3.809928966802545e-05}]
{"$schema": "http://json-schema.org/schema#", "type": "array", "items": {"type": "object", "properties": {"className": {"type": "string"}, "probability": {"type": "number"}}, "required": ["className", "probability"]}}
abcdd064-b897-40a8-8bbe-c69359211e5e/b399676b-fcf8-48a2-91ba-a864766614ce/0/0
Color Detection
Detect Colors of the Objects in a Image
null
Image Color Analysis
This endpoint responds with all the colors present in an image. Since white and black are prominent colors, it is advisable to consider the next color apart from White and Black.
200
Colors in Image
{"colors": {"black": 0.4, "blue": 0.3, "silver": 0.2, "white": 0.1}, "status": "success"}
{"type": "object", "properties": {"colors": {"type": "object", "properties": {"black": {"type": "number"}, "blue": {"type": "number"}, "silver": {"type": "number"}, "white": {"type": "number"}}}, "status": {"type": "string"}}}
9b9106be-ecf1-491c-a21b-1fc72657a3ef/dd26ddb0-c16c-420f-a709-c1871a3f23b6/0/0
Face Detection
Our Face Detection API detects and finds human faces within an image, and returns with high accuracy face bordering boxes. The Face Detect API accepts only images as input and each Image can have multiple faces and the API will return results for each face.
null
analytics
200
null
{"errorCode": 0, "errorMessage": "", "faces": [{"quality": 0, "faceRectangle": {"x": 0, "y": 0, "height": 0, "width": 0}, "faceAnalytics": {"age": "", "gender": "", "emotion": ""}}]}
{"type": "object", "properties": {"errorCode": {"type": ["integer", "null"], "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "errorMessage": {"type": ["string", "null"]}, "faces": {"type": ["array", "null"], "items": {"type": "object", "properties": {"quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "faceRectangle": {"type": "object", "properties": {"x": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "y": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "height": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "width": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}, "additionalProperties": false}, "faceAnalytics": {"type": "object", "properties": {"age": {"type": ["string", "null"]}, "gender": {"type": ["string", "null"]}, "emotion": {"type": ["string", "null"]}}, "additionalProperties": false}}, "additionalProperties": false}}}, "additionalProperties": false}
9b9106be-ecf1-491c-a21b-1fc72657a3ef/dd26ddb0-c16c-420f-a709-c1871a3f23b6/1/0
Face Detection
Our Face Detection API detects and finds human faces within an image, and returns with high accuracy face bordering boxes. The Face Detect API accepts only images as input and each Image can have multiple faces and the API will return results for each face.
null
analytics
200
null
{"errorCode": 0, "errorMessage": "", "faces": [{"quality": 0, "faceRectangle": {"x": 0, "y": 0, "height": 0, "width": 0}, "faceAnalytics": {"age": "", "gender": "", "emotion": ""}}]}
{"type": "object", "properties": {"errorCode": {"type": ["integer", "null"], "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "errorMessage": {"type": ["string", "null"]}, "faces": {"type": ["array", "null"], "items": {"type": "object", "properties": {"quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "faceRectangle": {"type": "object", "properties": {"x": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "y": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "height": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "width": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}, "additionalProperties": false}, "faceAnalytics": {"type": "object", "properties": {"age": {"type": ["string", "null"]}, "gender": {"type": ["string", "null"]}, "emotion": {"type": ["string", "null"]}}, "additionalProperties": false}}, "additionalProperties": false}}}, "additionalProperties": false}
9b9106be-ecf1-491c-a21b-1fc72657a3ef/91a19dbc-c297-45b5-bc6b-cb8cf52bdebd/0/0
Face Detection
Our Face Detection API detects and finds human faces within an image, and returns with high accuracy face bordering boxes. The Face Detect API accepts only images as input and each Image can have multiple faces and the API will return results for each face.
null
landmark
200
null
{"errorCode": 0, "errorMessage": "", "faces": [{"quality": 0, "faceRectangle": {"x": 0, "y": 0, "height": 0, "width": 0}, "faceLandmark": {"mouthLeft": {"x": 0, "y": 0}, "mouthRight": {"x": 0, "y": 0}, "nose": {"x": 0, "y": 0}, "eye_left": {"x": 0, "y": 0}, "eye_right": {"x": 0, "y": 0}}}]}
{"type": "object", "properties": {"errorCode": {"type": ["integer", "null"], "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "errorMessage": {"type": ["string", "null"]}, "faces": {"type": ["array", "null"], "items": {"type": "object", "properties": {"quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "faceRectangle": {"type": "object", "properties": {"x": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "y": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "height": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "width": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}, "additionalProperties": false}, "faceLandmark": {"type": "object", "properties": {"mouthLeft": {"type": "object", "properties": {"x": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "y": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}, "additionalProperties": false}, "mouthRight": {"type": "object", "properties": {"x": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "y": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}, "additionalProperties": false}, "nose": {"type": "object", "properties": {"x": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "y": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}, "additionalProperties": false}, "eye_left": {"type": "object", "properties": {"x": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "y": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}, "additionalProperties": false}, "eye_right": {"type": "object", "properties": {"x": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "y": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}, "additionalProperties": false}}, "additionalProperties": false}}, "additionalProperties": false}}}, "additionalProperties": false}
9b9106be-ecf1-491c-a21b-1fc72657a3ef/91a19dbc-c297-45b5-bc6b-cb8cf52bdebd/1/0
Face Detection
Our Face Detection API detects and finds human faces within an image, and returns with high accuracy face bordering boxes. The Face Detect API accepts only images as input and each Image can have multiple faces and the API will return results for each face.
null
landmark
200
null
{"errorCode": 0, "errorMessage": "", "faces": [{"quality": 0, "faceRectangle": {"x": 0, "y": 0, "height": 0, "width": 0}, "faceLandmark": {"mouthLeft": {"x": 0, "y": 0}, "mouthRight": {"x": 0, "y": 0}, "nose": {"x": 0, "y": 0}, "eye_left": {"x": 0, "y": 0}, "eye_right": {"x": 0, "y": 0}}}]}
{"type": "object", "properties": {"errorCode": {"type": ["integer", "null"], "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "errorMessage": {"type": ["string", "null"]}, "faces": {"type": ["array", "null"], "items": {"type": "object", "properties": {"quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "faceRectangle": {"type": "object", "properties": {"x": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "y": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "height": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "width": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}, "additionalProperties": false}, "faceLandmark": {"type": "object", "properties": {"mouthLeft": {"type": "object", "properties": {"x": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "y": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}, "additionalProperties": false}, "mouthRight": {"type": "object", "properties": {"x": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "y": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}, "additionalProperties": false}, "nose": {"type": "object", "properties": {"x": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "y": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}, "additionalProperties": false}, "eye_left": {"type": "object", "properties": {"x": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "y": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}, "additionalProperties": false}, "eye_right": {"type": "object", "properties": {"x": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "y": {"type": "number", "format": "double", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}, "additionalProperties": false}}, "additionalProperties": false}}, "additionalProperties": false}}}, "additionalProperties": false}
9b9106be-ecf1-491c-a21b-1fc72657a3ef/a43d9add-14d6-430e-bda0-fcde95df4fae/0/0
Face Detection
Our Face Detection API detects and finds human faces within an image, and returns with high accuracy face bordering boxes. The Face Detect API accepts only images as input and each Image can have multiple faces and the API will return results for each face.
null
CheckLiveness
200
null
{"errorCode": 0, "errorMessage": "", "quality": 0, "probability": 0}
{"type": "object", "properties": {"errorCode": {"type": ["integer", "null"], "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "errorMessage": {"type": ["string", "null"]}, "quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "probability": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}}, "additionalProperties": false}
9b9106be-ecf1-491c-a21b-1fc72657a3ef/a43d9add-14d6-430e-bda0-fcde95df4fae/1/0
Face Detection
Our Face Detection API detects and finds human faces within an image, and returns with high accuracy face bordering boxes. The Face Detect API accepts only images as input and each Image can have multiple faces and the API will return results for each face.
null
CheckLiveness
200
null
{"errorCode": 0, "errorMessage": "", "quality": 0, "probability": 0}
{"type": "object", "properties": {"errorCode": {"type": ["integer", "null"], "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "errorMessage": {"type": ["string", "null"]}, "quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "probability": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}}, "additionalProperties": false}
9b9106be-ecf1-491c-a21b-1fc72657a3ef/95bfe5f8-eabb-46cf-a042-10c7466fcb45/0/0
Face Detection
Our Face Detection API detects and finds human faces within an image, and returns with high accuracy face bordering boxes. The Face Detect API accepts only images as input and each Image can have multiple faces and the API will return results for each face.
null
verify
200
null
{"errorCode": 0, "errorMessage": "", "matchedFaces": [{"confidence": 0, "image1_face": {"faceRectangle": {"x": 0, "y": 0, "height": 0, "width": 0}, "quality": 0}, "image2_face": {"faceRectangle": {"x": 0, "y": 0, "height": 0, "width": 0}, "quality": 0}}]}
{"type": "object", "properties": {"errorCode": {"type": ["integer", "null"], "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "errorMessage": {"type": ["string", "null"]}, "matchedFaces": {"type": ["array", "null"], "items": {"type": "object", "properties": {"confidence": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "image1_face": {"type": "object", "properties": {"faceRectangle": {"type": "object", "properties": {"x": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "y": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "height": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "width": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}, "additionalProperties": false}, "quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}}, "additionalProperties": false}, "image2_face": {"type": "object", "properties": {"faceRectangle": {"type": "object", "properties": {"x": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "y": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "height": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "width": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}, "additionalProperties": false}, "quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}}, "additionalProperties": false}}, "additionalProperties": false}}}, "additionalProperties": false}
9b9106be-ecf1-491c-a21b-1fc72657a3ef/95bfe5f8-eabb-46cf-a042-10c7466fcb45/1/0
Face Detection
Our Face Detection API detects and finds human faces within an image, and returns with high accuracy face bordering boxes. The Face Detect API accepts only images as input and each Image can have multiple faces and the API will return results for each face.
null
verify
200
null
{"errorCode": 0, "errorMessage": "", "matchedFaces": [{"confidence": 0, "image1_face": {"faceRectangle": {"x": 0, "y": 0, "height": 0, "width": 0}, "quality": 0}, "image2_face": {"faceRectangle": {"x": 0, "y": 0, "height": 0, "width": 0}, "quality": 0}}]}
{"type": "object", "properties": {"errorCode": {"type": ["integer", "null"], "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "errorMessage": {"type": ["string", "null"]}, "matchedFaces": {"type": ["array", "null"], "items": {"type": "object", "properties": {"confidence": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "image1_face": {"type": "object", "properties": {"faceRectangle": {"type": "object", "properties": {"x": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "y": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "height": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "width": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}, "additionalProperties": false}, "quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}}, "additionalProperties": false}, "image2_face": {"type": "object", "properties": {"faceRectangle": {"type": "object", "properties": {"x": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "y": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "height": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "width": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}, "additionalProperties": false}, "quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}}, "additionalProperties": false}}, "additionalProperties": false}}}, "additionalProperties": false}
9b9106be-ecf1-491c-a21b-1fc72657a3ef/a40598ec-d9b1-4210-8920-cfb8e8d759b4/0/0
Face Detection
Our Face Detection API detects and finds human faces within an image, and returns with high accuracy face bordering boxes. The Face Detect API accepts only images as input and each Image can have multiple faces and the API will return results for each face.
null
detect
200
null
{"errorCode": 0, "errorMessage": "", "faces": [{"quality": 0, "faceRectangle": {"x": 0, "y": 0, "height": 0, "width": 0}}]}
{"type": "object", "properties": {"errorCode": {"type": ["integer", "null"], "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "errorMessage": {"type": ["string", "null"]}, "faces": {"type": ["array", "null"], "items": {"type": "object", "properties": {"quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "faceRectangle": {"type": "object", "properties": {"x": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "y": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "height": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "width": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}, "additionalProperties": false}}, "additionalProperties": false}}}, "additionalProperties": false}
9b9106be-ecf1-491c-a21b-1fc72657a3ef/a40598ec-d9b1-4210-8920-cfb8e8d759b4/1/0
Face Detection
Our Face Detection API detects and finds human faces within an image, and returns with high accuracy face bordering boxes. The Face Detect API accepts only images as input and each Image can have multiple faces and the API will return results for each face.
null
detect
200
null
{"errorCode": 0, "errorMessage": "", "faces": [{"quality": 0, "faceRectangle": {"x": 0, "y": 0, "height": 0, "width": 0}}]}
{"type": "object", "properties": {"errorCode": {"type": ["integer", "null"], "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "errorMessage": {"type": ["string", "null"]}, "faces": {"type": ["array", "null"], "items": {"type": "object", "properties": {"quality": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "faceRectangle": {"type": "object", "properties": {"x": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "y": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "height": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "width": {"type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}, "additionalProperties": false}}, "additionalProperties": false}}}, "additionalProperties": false}
b7cb203a-b8f6-4cfe-a671-cdf4dd3542f2/5ec0bfd8-80a0-45c1-b262-3eb3d19c884b/0/0
Auther Check
Plug and play the facial authentication into: point of sale, mobile app, self-checkouts, kiosk, ATM.
0.2
Compare person
Compares the face on the sourceImage with the largest face detected on the targetImage. By default, the submitted sourceImage will be compared the targetImage with the 80% of similarity threshold. If you want to compare images with a custom similarity threshold (for example, 98%), specify this number in the request body [option]. In response, you get the similarity value of the facesMatched images.
200
Example_1
{"similarity": 97.84321}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"similarity": {"type": "number"}}, "required": ["similarity"]}
b7cb203a-b8f6-4cfe-a671-cdf4dd3542f2/9553ecd1-3268-4aa5-a45a-bc45363d4db5/0/0
Auther Check
Plug and play the facial authentication into: point of sale, mobile app, self-checkouts, kiosk, ATM.
0.2
Verify person
Comparison of the face of a person who declares that his face belongs to the known person_id. With this request, we start 1:1 matching for the enrolled person in our system. If the submitted person's face matches to 80% with the person's image that belongs to the declared person_id, then the verification result is successful.
200
Example_1
{"personId": "string", "created": "2020-09-03T16:05:08.938Z", "updated": "2020-09-04T16:05:08.938Z"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"personId": {"type": "string"}, "created": {"type": "string"}, "updated": {"type": "string"}}, "required": ["created", "personId", "updated"]}
b7cb203a-b8f6-4cfe-a671-cdf4dd3542f2/4dd8f2f1-88c4-4b20-816a-48183cb0974f/0/0
Auther Check
Plug and play the facial authentication into: point of sale, mobile app, self-checkouts, kiosk, ATM.
0.2
Identify person
Submit the Base64-encoded image. With this request, we start 1:N searching for the most similar enrolled person in our system. The search result will be person_id, which matches the searched one by 98%. To improve the quality and speed of recognition, follow the image requirements for the submitted images.
200
Example_1
{"personId": "string", "created": "2020-09-03T16:05:08.938Z", "updated": "2020-09-04T16:05:08.938Z"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"personId": {"type": "string"}, "created": {"type": "string"}, "updated": {"type": "string"}}, "required": ["created", "personId", "updated"]}
b7cb203a-b8f6-4cfe-a671-cdf4dd3542f2/9626d201-352f-4225-895f-9f50562b7246/0/0
Auther Check
Plug and play the facial authentication into: point of sale, mobile app, self-checkouts, kiosk, ATM.
0.2
Get person by id
To check if the person_id already exists in the system, just specify the path with person_id. If the person_id exists in response you will get the same person_id and information when a person was created and updated.
200
Example_1
{"personId": "string", "created": "2020-09-03T16:05:08.938Z", "updated": "2020-09-04T16:05:08.938Z"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"personId": {"type": "string"}, "created": {"type": "string"}, "updated": {"type": "string"}}, "required": ["created", "personId", "updated"]}
36cb67a9-7970-487e-a19f-0ada32216639/16931bd6-ae6b-42eb-b782-ad2e48cd2de5/0/0
Facial Landmark Detection
Supports 72 key points, 150 key points, and 201 key points of face detection. Key points include face, eyes, eyebrows, lips and nose contour, etc. This service has the following three business functions:
null
Facial Landmark Detection
Facial Landmark Detection
200
Success
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 0, "result": {"face_num": 1, "face_list": [{"face_token": "d80fc864a9f11ca97f753b7fd6ef3092", "location": {"left": 148.2, "top": 207.76, "width": 293, "height": 265, "rotation": 0}, "face_probability": 1, "angle": {"yaw": 19.13, "pitch": 17.13, "roll": -3.5}, "landmark201": [{"cheek_right_1": {"x": 152.91139221191, "y": 234.10575866699}, "cheek_right_3": {"x": 153.21405029297, "y": 275.29922485352}, "cheek_right_5": {"x": 159.1178894043, "y": 317.43710327148}, "cheek_right_7": {"x": 171.67828369141, "y": 359.82891845703}, "cheek_right_9": {"x": 187.34191894531, "y": 402.29333496094}, "cheek_right_11": {"x": 209.47039794922, "y": 448.70611572266}, "chin_2": {"x": 244.76583862305, "y": 480.13912963867}, "cheek_left_11": {"x": 300.36502075195, "y": 472.90335083008}, "cheek_left_9": {"x": 355.99075317383, "y": 439.84826660156}, "cheek_left_7": {"x": 402.11898803711, "y": 393.20904541016}, "cheek_left_5": {"x": 427.60656738281, "y": 340.88400268555}, "cheek_left_3": {"x": 442.78765869141, "y": 287.72296142578}, "cheek_left_1": {"x": 453.259765625, "y": 234.46209716797}, "eye_right_corner_right": {"x": 166.43855285645, "y": 245.62696838379}, "eye_right_eyelid_upper_2": {"x": 178.73571777344, "y": 233.48094177246}, "eye_right_eyelid_upper_4": {"x": 194.54188537598, "y": 231.23136901855}, "eye_right_eyelid_upper_6": {"x": 209.59561157227, "y": 238.01022338867}, "eye_right_corner_left": {"x": 219.60101318359, "y": 252.86766052246}, "eye_right_eyelid_lower_6": {"x": 206.45573425293, "y": 256.78121948242}, "eye_right_eyelid_lower_4": {"x": 191.26301574707, "y": 257.60192871094}, "eye_right_eyelid_lower_2": {"x": 177.1402130127, "y": 253.22375488281}, "eye_right_eyeball_center": {"x": 197.69207763672, "y": 242.78115844727}, "eyebrow_right_corner_right": {"x": 152.5193939209, "y": 218.0311126709}, "eyebrow_right_upper_2": {"x": 166.62945556641, "y": 206.35087585449}, "eyebrow_right_upper_3": {"x": 183.5559387207, "y": 209.04162597656}, "eyebrow_right_upper_4": {"x": 200.37629699707, "y": 216.20118713379}, "eyebrow_right_corner_left": {"x": 215.19021606445, "y": 231.66654968262}, "eyebrow_right_lower_3": {"x": 197.2017364502, "y": 226.71070861816}, "eyebrow_right_lower_2": {"x": 180.5466003418, "y": 221.2080078125}, "eyebrow_right_lower_1": {"x": 165.50422668457, "y": 217.85374450684}, "eye_left_corner_right": {"x": 284.4423828125, "y": 253.46418762207}, "eye_left_eyelid_upper_2": {"x": 299.30715942383, "y": 238.99905395508}, "eye_left_eyelid_upper_4": {"x": 316.24237060547, "y": 233.8639831543}, "eye_left_eyelid_upper_6": {"x": 333.67279052734, "y": 238.54011535645}, "eye_left_corner_left": {"x": 347.63455200195, "y": 252.36630249023}, "eye_left_eyelid_lower_6": {"x": 333.91830444336, "y": 257.90979003906}, "eye_left_eyelid_lower_4": {"x": 316.63473510742, "y": 260.21624755859}, "eye_left_eyelid_lower_2": {"x": 299.55313110352, "y": 257.49395751953}, "eye_left_eyeball_center": {"x": 320.76895141602, "y": 244.34625244141}, "eyebrow_left_corner_right": {"x": 275.39828491211, "y": 230.90559387207}, "eyebrow_left_upper_2": {"x": 296.08618164062, "y": 216.02331542969}, "eyebrow_left_upper_3": {"x": 319.22418212891, "y": 210.38291931152}, "eyebrow_left_upper_4": {"x": 345.15350341797, "y": 209.21328735352}, "eyebrow_left_corner_left": {"x": 372.05294799805, "y": 222.89102172852}, "eyebrow_left_lower_3": {"x": 345.80990600586, "y": 220.7686920166}, "eyebrow_left_lower_2": {"x": 321.57382202148, "y": 223.06295776367}, "eyebrow_left_lower_1": {"x": 298.73480224609, "y": 227.94213867188}, "nose_right_contour_1": {"x": 229.40553283691, "y": 257.50231933594}, "nose_right_contour_2": {"x": 221.8087310791, "y": 283.46823120117}, "nose_right_contour_3": {"x": 214.45086669922, "y": 309.3616027832}, "nose_right_contour_4": {"x": 207.43621826172, "y": 334.99829101562}, "nose_right_contour_6": {"x": 216.9593963623, "y": 342.42492675781}, "nose_left_contour_6": {"x": 253.02030944824, "y": 342.05941772461}, "nose_left_contour_4": {"x": 276.26602172852, "y": 338.05661010742}, "nose_left_contour_3": {"x": 267.28646850586, "y": 311.75662231445}, "nose_left_contour_2": {"x": 265.51040649414, "y": 285.46475219727}, "nose_left_contour_1": {"x": 264.02905273438, "y": 258.85943603516}, "nose_tip": {"x": 225.04518127441, "y": 328.64370727539}, "mouth_corner_right_outer": {"x": 206.5617980957, "y": 385.76031494141}, "mouth_lip_upper_outer_3": {"x": 219.67320251465, "y": 375.18218994141}, "mouth_lip_upper_outer_6": {"x": 239.92309570312, "y": 374.76977539062}, "mouth_lip_upper_outer_9": {"x": 270.28350830078, "y": 376.16665649414}, "mouth_corner_left_outer": {"x": 303.98645019531, "y": 385.67404174805}, "mouth_lip_lower_outer_9": {"x": 273.26431274414, "y": 404.86437988281}, "mouth_lip_lower_outer_6": {"x": 240.91514587402, "y": 410.22521972656}, "mouth_lip_lower_outer_3": {"x": 219.5506439209, "y": 403.01010131836}, "mouth_lip_upper_inner_3": {"x": 221.61395263672, "y": 384.23931884766}, "mouth_lip_upper_inner_6": {"x": 240.56512451172, "y": 385.11706542969}, "mouth_lip_upper_inner_9": {"x": 269.63024902344, "y": 384.37921142578}, "mouth_lip_lower_inner_9": {"x": 269.86450195312, "y": 391.81661987305}, "mouth_lip_lower_inner_6": {"x": 241.16767883301, "y": 392.5026550293}, "mouth_lip_lower_inner_3": {"x": 223.11337280273, "y": 390.59606933594}}]}]}}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "result": {"type": "object", "required": false, "properties": {"face_num": {"type": "integer", "required": true, "example": 1, "description": "The number of faces in the picture."}, "face_list": {"type": "array", "required": true, "description": "Face information."}}}}
36cb67a9-7970-487e-a19f-0ada32216639/16931bd6-ae6b-42eb-b782-ad2e48cd2de5/0/1
Facial Landmark Detection
Supports 72 key points, 150 key points, and 201 key points of face detection. Key points include face, eyes, eyebrows, lips and nose contour, etc. This service has the following three business functions:
null
Facial Landmark Detection
Facial Landmark Detection
200
Error
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 400, "error_code_str": "ERROR_PARAMETERS", "error_msg": "image cannot be empty"}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "result": {"type": "object", "required": false, "properties": {"face_num": {"type": "integer", "required": true, "example": 1, "description": "The number of faces in the picture."}, "face_list": {"type": "array", "required": true, "description": "Face information."}}}}
36cb67a9-7970-487e-a19f-0ada32216639/16931bd6-ae6b-42eb-b782-ad2e48cd2de5/1/0
Facial Landmark Detection
Supports 72 key points, 150 key points, and 201 key points of face detection. Key points include face, eyes, eyebrows, lips and nose contour, etc. This service has the following three business functions:
null
Facial Landmark Detection
Facial Landmark Detection
401
Example
{"message": "Invalid API key in request"}
{"type": "object", "properties": {"message": {"type": "string", "required": true, "example": "Invalid API key in request", "description": "Error Message."}}}
cf6973e3-cd94-42b0-be89-6dd1c1333983/e409f0a7-152a-4880-99bf-c17dde4861a9/0/0
The form recognition
Form recognition and extrac key-value
null
get key value
get key value
200
New Example
{"data": "value"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"data": {"type": "string"}}, "required": ["data"]}
cf6973e3-cd94-42b0-be89-6dd1c1333983/e409f0a7-152a-4880-99bf-c17dde4861a9/1/0
The form recognition
Form recognition and extrac key-value
null
get key value
get key value
200
Response
{"erroNo": 0, "errMsg": "", "data": {"textLines": [{"x0": 53, "x1": 108, "top": 42, "bottom": 72, "text": "TO\uff1a", "label": "KEY"}, {"x0": 108, "x1": 345, "top": 42, "bottom": 72, "text": "\u5929\u6d25\u5916\u4ee3\u8d27\u8fd0\u6709\u9650\u516c\u53f8", "label": "MARKER"}, {"x0": 640, "x1": 803, "top": 44, "bottom": 68, "text": "HZHSE21114259", "label": "VALUE"}, {"x0": 840, "x1": 961, "top": 48, "bottom": 67, "text": "2021/11/30", "label": "VALUE"}, {"x0": 53, "x1": 423, "top": 88, "bottom": 116, "text": "Shipper\uff08Full Name \uff06Address\uff09\uff08\u6258\u8fd0\u4eba\uff09\uff1a", "label": "KEY"}, {"x0": 696, "x1": 1061, "top": 115, "bottom": 146, "text": "\u5929\u6d25\u6d69\u4e4b\u822a\u56fd\u9645\u8d27\u8fd0\u4ee3\u7406\u6709\u9650\u516c\u53f8", "label": "MARKER"}, {"x0": 52, "x1": 488, "top": 126, "bottom": 141, "text": "RUNTON INTERNATIONAL TRADING CO.,LIMITED.", "label": "VALUE"}, {"x0": 52, "x1": 334, "top": 155, "bottom": 171, "text": "NO.25,BAODING ROAD,HEPING", "label": "VALUE"}, {"x0": 661, "x1": 752, "top": 158, "bottom": 208, "text": "HH", "label": "MARKER"}, {"x0": 784, "x1": 988, "top": 171, "bottom": 205, "text": "\u51fa\u53e3\u8d27\u7269\u6258\u8fd0\u5355", "label": "MARKER"}, {"x0": 52, "x1": 274, "top": 185, "bottom": 201, "text": "DISTRICT,TIANJIN,CHINA", "label": "VALUE"}, {"x0": 663, "x1": 749, "top": 203, "bottom": 214, "text": "S4E01L000748", "label": "VALUE"}, {"x0": 734, "x1": 1006, "top": 224, "bottom": 243, "text": "Sea Freight Shipping Instructions", "label": "MARKER"}, {"x0": 53, "x1": 237, "top": 292, "bottom": 320, "text": "Consignee\uff08\u6536\u8d27\u4eba\uff09\uff1a", "label": "KEY"}, {"x0": 640, "x1": 741, "top": 302, "bottom": 330, "text": "OP\uff08\u64cd\u4f5c\uff09\uff1a", "label": "KEY"}, {"x0": 741, "x1": 804, "top": 302, "bottom": 330, "text": "\u51af\u5176\u4f73", "label": "VALUE"}, {"x0": 54, "x1": 287, "top": 325, "bottom": 350, "text": "STL MARKETING SDN BHD", "label": "VALUE"}, {"x0": 54, "x1": 303, "top": 355, "bottom": 379, "text": "NO.93,JALAN KERISI,SUNGAI", "label": "VALUE"}, {"x0": 640, "x1": 798, "top": 365, "bottom": 392, "text": "SEALES\uff08\u4e1a\u52a1\u5458\uff09\uff1a", "label": "KEY"}, {"x0": 798, "x1": 858, "top": 365, "bottom": 392, "text": "\u5218\u632f\u5b87", "label": "VALUE"}, {"x0": 54, "x1": 369, "top": 384, "bottom": 409, "text": "RENGIT,81620 PENGERANG, JOHOR.", "label": "VALUE"}, {"x0": 639, "x1": 732, "top": 438, "bottom": 457, "text": "TEL\uff08\u7535\u8bdd\uff09\uff1a", "label": "KEY"}, {"x0": 732, "x1": 969, "top": 438, "bottom": 457, "text": "24385813,13821677174", "label": "VALUE"}, {"x0": 52, "x1": 252, "top": 489, "bottom": 508, "text": "Notify Party\uff08\u901a\u77e5\u4eba\uff09\uff1a", "label": "KEY"}, {"x0": 640, "x1": 864, "top": 500, "bottom": 527, "text": "Service Term\uff08\u8fd0\u8f93\u6761\u6b3e\uff09\uff1a", "label": "KEY"}, {"x0": 864, "x1": 922, "top": 500, "bottom": 527, "text": "CY-CY", "label": "VALUE"}, {"x0": 52, "x1": 289, "top": 522, "bottom": 538, "text": "STL MARKETING SDN BHD", "label": "VALUE"}, {"x0": 54, "x1": 303, "top": 547, "bottom": 572, "text": "NO.93,JALAN KERISI,SUNGAI", "label": "VALUE"}, {"x0": 639, "x1": 862, "top": 567, "bottom": 595, "text": "Freight Term\uff08\u8fd0\u8d39\u6761\u6b3e\uff09\uff1a", "label": "KEY"}, {"x0": 862, "x1": 1033, "top": 567, "bottom": 595, "text": "FREIGHT PREPAID", "label": "VALUE"}, {"x0": 54, "x1": 369, "top": 577, "bottom": 601, "text": "RENGIT,81620 PENGERANG, JOHOR.", "label": "VALUE"}, {"x0": 640, "x1": 789, "top": 636, "bottom": 662, "text": "ETD\uff08\u9884\u5b9a\u8239\u671f\uff09\uff1a", "label": "KEY"}, {"x0": 789, "x1": 905, "top": 636, "bottom": 662, "text": "2021\uff0f12\uff0f24", "label": "VALUE"}, {"x0": 52, "x1": 301, "top": 691, "bottom": 707, "text": "Ocean Vessel\uff0fVoy\uff08\u8239\u540d\u822a\u6b21\uff09\uff1a", "label": "KEY"}, {"x0": 346, "x1": 556, "top": 691, "bottom": 707, "text": "Port of Loading\uff08\u8d77\u8fd0\u6e2f\uff09\uff1a", "label": "KEY"}, {"x0": 640, "x1": 812, "top": 699, "bottom": 725, "text": "CARRIER\uff08\u8239\u516c\u53f8\uff09\uff1a", "label": "KEY"}, {"x0": 812, "x1": 861, "top": 699, "bottom": 725, "text": "EMC", "label": "VALUE"}, {"x0": 345, "x1": 503, "top": 724, "bottom": 738, "text": "XINGANG,CHINA", "label": "VALUE"}, {"x0": 639, "x1": 886, "top": 759, "bottom": 779, "text": "Cargo Quantity\uff08\u8d27\u91cf\u63cf\u8ff0\uff09\uff1a", "label": "KEY"}, {"x0": 349, "x1": 563, "top": 766, "bottom": 790, "text": "Place of Delivery\uff08\u4ea4\u8d27\u5730\uff09\uff1a", "label": "KEY"}, {"x0": 886, "x1": 959, "top": 759, "bottom": 779, "text": "1\uff0a20GP", "label": "VALUE"}, {"x0": 52, "x1": 277, "top": 770, "bottom": 789, "text": "Part of Discharge\uff08\u5378\u8d27\u6e2f\uff09\uff1a", "label": "KEY"}, {"x0": 52, "x1": 199, "top": 803, "bottom": 817, "text": "PASIR GUDANG", "label": "VALUE"}, {"x0": 346, "x1": 491, "top": 803, "bottom": 817, "text": "PASIR GUDANG", "label": "VALUE"}, {"x0": 804, "x1": 826, "top": 805, "bottom": 832, "text": "\u5426", "label": "O"}, {"x0": 878, "x1": 1035, "top": 805, "bottom": 831, "text": "Batch\uff08\u53ef\u5426\u5206\u6279\uff09\uff1a", "label": "KEY"}, {"x0": 639, "x1": 776, "top": 810, "bottom": 827, "text": "T\uff0fS\uff08\u53ef\u5426\u8f6c\u8239\uff09\uff1a", "label": "KEY"}, {"x0": 1055, "x1": 1083, "top": 809, "bottom": 828, "text": "\u5426", "label": "O"}, {"x0": 98, "x1": 220, "top": 849, "bottom": 863, "text": "Marks & Nos", "label": "KEY"}, {"x0": 269, "x1": 466, "top": 849, "bottom": 868, "text": "Quantity&Packaging", "label": "KEY"}, {"x0": 533, "x1": 719, "top": 845, "bottom": 869, "text": "Description of Goods", "label": "KEY"}, {"x0": 777, "x1": 1128, "top": 849, "bottom": 865, "text": "Gross Weight(KGS) Measurement(CBM)", "label": "KEY"}, {"x0": 312, "x1": 420, "top": 875, "bottom": 899, "text": "\uff08\u4ef6\u6570\u53ca\u5305\u88c5\uff09", "label": "KEY"}, {"x0": 103, "x1": 213, "top": 879, "bottom": 895, "text": "\uff08\u6807\u5fd7\u548c\u53f7\u7801\uff09", "label": "KEY"}, {"x0": 598, "x1": 654, "top": 879, "bottom": 895, "text": "\uff08\u54c1\u540d\uff09", "label": "KEY"}, {"x0": 819, "x1": 907, "top": 875, "bottom": 899, "text": "\u6bdb\u91cd\uff08\u516c\u65a4\uff09", "label": "KEY"}, {"x0": 981, "x1": 1093, "top": 879, "bottom": 895, "text": "\u4f53\u79ef\uff08\u7acb\u65b9\u7c73\uff09", "label": "KEY"}, {"x0": 346, "x1": 390, "top": 900, "bottom": 913, "text": "1300", "label": "VALUE"}, {"x0": 817, "x1": 935, "top": 900, "bottom": 922, "text": "20000.00KGS", "label": "VALUE"}, {"x0": 992, "x1": 1094, "top": 899, "bottom": 924, "text": "25.000CBM", "label": "VALUE"}, {"x0": 468, "x1": 725, "top": 927, "bottom": 942, "text": "FIBER GLASS YARN C-GRADE", "label": "VALUE"}, {"x0": 470, "x1": 548, "top": 952, "bottom": 976, "text": "\u73bb\u7483\u7ea4\u7ef4", "label": "VALUE"}, {"x0": 470, "x1": 559, "top": 981, "bottom": 1006, "text": "HS CODE:", "label": "KEY"}, {"x0": 559, "x1": 642, "top": 981, "bottom": 1006, "text": "70191200", "label": "VALUE"}, {"x0": 53, "x1": 337, "top": 1228, "bottom": 1256, "text": "On Board Date\uff08\u5b9e\u9645\u88c5\u8239\u65e5\u671f\uff09\uff1a", "label": "KEY"}, {"x0": 483, "x1": 542, "top": 1241, "bottom": 1262, "text": "CY-CY", "label": "VALUE"}, {"x0": 479, "x1": 641, "top": 1277, "bottom": 1293, "text": "FREIGHT PREPAID", "label": "VALUE"}, {"x0": 842, "x1": 1126, "top": 1273, "bottom": 1297, "text": "SHIPPER'S LOAD,COUNT & SEAL", "label": "VALUE"}, {"x0": 52, "x1": 356, "top": 1318, "bottom": 1335, "text": "Total Packages\uff08in words\uff09\uff08\u4ef6\u6570\u5927\u5199\uff09\uff1a", "label": "KEY"}, {"x0": 356, "x1": 771, "top": 1318, "bottom": 1335, "text": "SAY ONE THOUSAND THREE HUNDRED ONLY.", "label": "VALUE"}, {"x0": 54, "x1": 188, "top": 1353, "bottom": 1379, "text": "Ramark\uff08\u5907\u6ce8\uff09\uff1a", "label": "KEY"}, {"x0": 54, "x1": 270, "top": 1386, "bottom": 1412, "text": "\u7533\u8bf7\u76ee\u7684\u6e2f\u514d\u7528\u7bb114\u5929", "label": "VALUE"}, {"x0": 53, "x1": 131, "top": 1419, "bottom": 1445, "text": "\u5b9a0619", "label": "VALUE"}, {"x0": 54, "x1": 363, "top": 1452, "bottom": 1478, "text": "F321646\uff0fCNT008439 \u5b59\u5bb6\u7426\u786e\u8ba4", "label": null}], "keyValuePair": [{"key": {"text": "SEALES\uff08\u4e1a\u52a1\u5458\uff09\uff1a", "textLines": [{"text": "SEALES\uff08\u4e1a\u52a1\u5458\uff09\uff1a", "bbox": [640, 365, 798, 392]}]}, "value": {"text": "\u51af\u5176\u4f73*****\u5218\u632f\u5b87", "textLines": [{"text": "\u51af\u5176\u4f73", "bbox": [741, 302, 804, 330]}, {"text": "\u5218\u632f\u5b87", "bbox": [798, 365, 858, 392]}]}}, {"key": {"text": "Total Packages\uff08in words\uff09\uff08\u4ef6\u6570\u5927\u5199\uff09\uff1a", "textLines": [{"text": "Total Packages\uff08in words\uff09\uff08\u4ef6\u6570\u5927\u5199\uff09\uff1a", "bbox": [52, 1318, 356, 1335]}]}, "value": {"text": "SAY ONE THOUSAND THREE HUNDRED ONLY.", "textLines": [{"text": "SAY ONE THOUSAND THREE HUNDRED ONLY.", "bbox": [356, 1318, 771, 1335]}]}}, {"key": {"text": "Notify Party\uff08\u901a\u77e5\u4eba\uff09\uff1a", "textLines": [{"text": "Notify Party\uff08\u901a\u77e5\u4eba\uff09\uff1a", "bbox": [52, 489, 252, 508]}]}, "value": {"text": "STL MARKETING SDN BHD\nNO.93,JALAN KERISI,SUNGAI\nRENGIT,81620 PENGERANG, JOHOR.", "textLines": [{"text": "STL MARKETING SDN BHD\nNO.93,JALAN KERISI,SUNGAI\nRENGIT,81620 PENGERANG, JOHOR.", "bbox": [52, 522, 369, 601]}]}}, {"key": {"text": "Consignee\uff08\u6536\u8d27\u4eba\uff09\uff1a", "textLines": [{"text": "Consignee\uff08\u6536\u8d27\u4eba\uff09\uff1a", "bbox": [53, 292, 237, 320]}]}, "value": {"text": "STL MARKETING SDN BHD\nNO.93,JALAN KERISI,SUNGAI\nRENGIT,81620 PENGERANG, JOHOR.", "textLines": [{"text": "STL MARKETING SDN BHD\nNO.93,JALAN KERISI,SUNGAI\nRENGIT,81620 PENGERANG, JOHOR.", "bbox": [54, 325, 369, 409]}]}}, {"key": {"text": "Gross Weight(KGS) Measurement(CBM)\n\u6bdb\u91cd\uff08\u516c\u65a4\uff09", "textLines": [{"text": "Gross Weight(KGS) Measurement(CBM)\n\u6bdb\u91cd\uff08\u516c\u65a4\uff09", "bbox": [777, 849, 1128, 899]}]}, "value": {"text": "20000.00KGS", "textLines": [{"text": "20000.00KGS", "bbox": [817, 900, 935, 922]}]}}, {"key": {"text": "HS CODE:", "textLines": [{"text": "HS CODE:", "bbox": [470, 981, 559, 1006]}]}, "value": {"text": "70191200", "textLines": [{"text": "70191200", "bbox": [559, 981, 642, 1006]}]}}, {"key": {"text": "Freight Term\uff08\u8fd0\u8d39\u6761\u6b3e\uff09\uff1a", "textLines": [{"text": "Freight Term\uff08\u8fd0\u8d39\u6761\u6b3e\uff09\uff1a", "bbox": [639, 567, 862, 595]}]}, "value": {"text": "CY-CY*****FREIGHT PREPAID*****EMC", "textLines": [{"text": "CY-CY", "bbox": [864, 500, 922, 527]}, {"text": "FREIGHT PREPAID", "bbox": [862, 567, 1033, 595]}, {"text": "EMC", "bbox": [812, 699, 861, 725]}]}}, {"key": {"text": "Service Term\uff08\u8fd0\u8f93\u6761\u6b3e\uff09\uff1a", "textLines": [{"text": "Service Term\uff08\u8fd0\u8f93\u6761\u6b3e\uff09\uff1a", "bbox": [640, 500, 864, 527]}]}, "value": {"text": "CY-CY*****FREIGHT PREPAID*****EMC", "textLines": [{"text": "CY-CY", "bbox": [864, 500, 922, 527]}, {"text": "FREIGHT PREPAID", "bbox": [862, 567, 1033, 595]}, {"text": "EMC", "bbox": [812, 699, 861, 725]}]}}, {"key": {"text": "OP\uff08\u64cd\u4f5c\uff09\uff1a", "textLines": [{"text": "OP\uff08\u64cd\u4f5c\uff09\uff1a", "bbox": [640, 302, 741, 330]}]}, "value": {"text": "\u51af\u5176\u4f73", "textLines": [{"text": "\u51af\u5176\u4f73", "bbox": [741, 302, 804, 330]}]}}, {"key": {"text": "Ramark\uff08\u5907\u6ce8\uff09\uff1a", "textLines": [{"text": "Ramark\uff08\u5907\u6ce8\uff09\uff1a", "bbox": [54, 1353, 188, 1379]}]}, "value": {"text": "\u7533\u8bf7\u76ee\u7684\u6e2f\u514d\u7528\u7bb114\u5929\n\u5b9a0619", "textLines": [{"text": "\u7533\u8bf7\u76ee\u7684\u6e2f\u514d\u7528\u7bb114\u5929\n\u5b9a0619", "bbox": [53, 1386, 270, 1445]}]}}, {"key": {"text": "ETD\uff08\u9884\u5b9a\u8239\u671f\uff09\uff1a", "textLines": [{"text": "ETD\uff08\u9884\u5b9a\u8239\u671f\uff09\uff1a", "bbox": [640, 636, 789, 662]}]}, "value": {"text": "2021\uff0f12\uff0f24", "textLines": [{"text": "2021\uff0f12\uff0f24", "bbox": [789, 636, 905, 662]}]}}, {"key": {"text": "Part of Discharge\uff08\u5378\u8d27\u6e2f\uff09\uff1a", "textLines": [{"text": "Part of Discharge\uff08\u5378\u8d27\u6e2f\uff09\uff1a", "bbox": [52, 770, 277, 789]}]}, "value": {"text": "PASIR GUDANG", "textLines": [{"text": "PASIR GUDANG", "bbox": [52, 803, 199, 817]}]}}, {"key": {"text": "Cargo Quantity\uff08\u8d27\u91cf\u63cf\u8ff0\uff09\uff1a", "textLines": [{"text": "Cargo Quantity\uff08\u8d27\u91cf\u63cf\u8ff0\uff09\uff1a", "bbox": [639, 759, 886, 779]}]}, "value": {"text": "1\uff0a20GP", "textLines": [{"text": "1\uff0a20GP", "bbox": [886, 759, 959, 779]}]}}, {"key": {"text": "Port of Loading\uff08\u8d77\u8fd0\u6e2f\uff09\uff1a", "textLines": [{"text": "Port of Loading\uff08\u8d77\u8fd0\u6e2f\uff09\uff1a", "bbox": [346, 691, 556, 707]}]}, "value": {"text": "XINGANG,CHINA", "textLines": [{"text": "XINGANG,CHINA", "bbox": [345, 724, 503, 738]}]}}, {"key": {"text": "CARRIER\uff08\u8239\u516c\u53f8\uff09\uff1a", "textLines": [{"text": "CARRIER\uff08\u8239\u516c\u53f8\uff09\uff1a", "bbox": [640, 699, 812, 725]}]}, "value": {"text": "FREIGHT PREPAID*****EMC", "textLines": [{"text": "FREIGHT PREPAID", "bbox": [862, 567, 1033, 595]}, {"text": "EMC", "bbox": [812, 699, 861, 725]}]}}, {"key": {"text": "TEL\uff08\u7535\u8bdd\uff09\uff1a", "textLines": [{"text": "TEL\uff08\u7535\u8bdd\uff09\uff1a", "bbox": [639, 438, 732, 457]}]}, "value": {"text": "24385813,13821677174", "textLines": [{"text": "24385813,13821677174", "bbox": [732, 438, 969, 457]}]}}, {"key": {"text": "Quantity&Packaging\n\uff08\u4ef6\u6570\u53ca\u5305\u88c5\uff09", "textLines": [{"text": "Quantity&Packaging\n\uff08\u4ef6\u6570\u53ca\u5305\u88c5\uff09", "bbox": [269, 849, 466, 899]}]}, "value": {"text": "1300", "textLines": [{"text": "1300", "bbox": [346, 900, 390, 913]}]}}, {"key": {"text": "\u4f53\u79ef\uff08\u7acb\u65b9\u7c73\uff09", "textLines": [{"text": "\u4f53\u79ef\uff08\u7acb\u65b9\u7c73\uff09", "bbox": [981, 879, 1093, 895]}]}, "value": {"text": "25.000CBM", "textLines": [{"text": "25.000CBM", "bbox": [992, 899, 1094, 924]}]}}, {"key": {"text": "Shipper\uff08Full Name \uff06Address\uff09\uff08\u6258\u8fd0\u4eba\uff09\uff1a", "textLines": [{"text": "Shipper\uff08Full Name \uff06Address\uff09\uff08\u6258\u8fd0\u4eba\uff09\uff1a", "bbox": [53, 88, 423, 116]}]}, "value": {"text": "RUNTON INTERNATIONAL TRADING CO.,LIMITED.\nNO.25,BAODING ROAD,HEPING\nDISTRICT,TIANJIN,CHINA", "textLines": [{"text": "RUNTON INTERNATIONAL TRADING CO.,LIMITED.\nNO.25,BAODING ROAD,HEPING\nDISTRICT,TIANJIN,CHINA", "bbox": [52, 126, 488, 201]}]}}, {"key": {"text": "Description of Goods\n\uff08\u54c1\u540d\uff09", "textLines": [{"text": "Description of Goods\n\uff08\u54c1\u540d\uff09", "bbox": [533, 845, 719, 895]}]}, "value": {"text": "FIBER GLASS YARN C-GRADE\n\u73bb\u7483\u7ea4\u7ef4", "textLines": [{"text": "FIBER GLASS YARN C-GRADE\n\u73bb\u7483\u7ea4\u7ef4", "bbox": [468, 927, 725, 976]}]}}, {"key": {"text": "Place of Delivery\uff08\u4ea4\u8d27\u5730\uff09\uff1a", "textLines": [{"text": "Place of Delivery\uff08\u4ea4\u8d27\u5730\uff09\uff1a", "bbox": [349, 766, 563, 790]}]}, "value": {"text": "XINGANG,CHINA*****PASIR GUDANG", "textLines": [{"text": "XINGANG,CHINA", "bbox": [345, 724, 503, 738]}, {"text": "PASIR GUDANG", "bbox": [346, 803, 491, 817]}]}}]}}
{"type": "object", "properties": {"data": {"type": "string"}}}
922aa39e-d7c8-4ac2-96e6-298f4f0f6abd/9e2de926-d595-4c91-82f0-0d9be8ee0312/0/0
AccuFace Detector
Precise and speedy face detection, as well as analysis of age and gender in images.
null
Face Detection
Detects faces in images and offers optional age and gender detection. Request needs to have content-type "multipart/form-data". Check out about tab to get started.
200
New Example
{"detected_faces": 1, "faces": [{"score": "1.00000", "bounding_box": {"x": 107, "y": 10, "width": 103, "height": 122}, "landmarks": {"x_right_eye": 139, "y_right_eye": 62, "x_left_eye": 174, "y_left_eye": 61, "x_nose_tip": 155, "y_nose_tip": 82, "x_right_corner_mouse": 142, "y_right_corner_mouse": 95, "x_left_corner_mouse": 173, "y_left_corner_mouse": 94}, "age": 37, "gender": "male", "gender_score": {"male": "0.99815", "female": "0.00185"}}]}
{"type": "object", "properties": {"detected_faces": {"type": "integer"}, "faces": {"type": "array", "items": {"type": "object", "properties": {"score": {"type": "string"}, "bounding_box": {"type": "object", "properties": {"x": {"type": "integer"}, "y": {"type": "integer"}, "width": {"type": "integer"}, "height": {"type": "integer"}}}, "landmarks": {"type": "object", "properties": {"x_right_eye": {"type": "integer"}, "y_right_eye": {"type": "integer"}, "x_left_eye": {"type": "integer"}, "y_left_eye": {"type": "integer"}, "x_nose_tip": {"type": "integer"}, "y_nose_tip": {"type": "integer"}, "x_right_corner_mouse": {"type": "integer"}, "y_right_corner_mouse": {"type": "integer"}, "x_left_corner_mouse": {"type": "integer"}, "y_left_corner_mouse": {"type": "integer"}}}, "age": {"type": "integer"}, "gender": {"type": "string"}, "gender_score": {"type": "object", "properties": {"male": {"type": "string"}, "female": {"type": "string"}}}}}}}}
922aa39e-d7c8-4ac2-96e6-298f4f0f6abd/9e2de926-d595-4c91-82f0-0d9be8ee0312/1/0
AccuFace Detector
Precise and speedy face detection, as well as analysis of age and gender in images.
null
Face Detection
Detects faces in images and offers optional age and gender detection. Request needs to have content-type "multipart/form-data". Check out about tab to get started.
400
New Example
{"code": "400", "error": "One of image_file or image_base64 must be provided."}
{"type": "object", "properties": {"code": {"type": "string"}, "error": {"type": "string"}}}
be12461e-9c05-4295-95b2-254395122179/d5f67dc5-602b-4eb0-bfdd-d1fa6b1671b9/0/0
Japan My Number Card OCR
Extract name, date of birth, card number, status and other text from the front and back of my "My Number" card (Japan's social security and tax number system).
6
Japan My Number Card OCR
Support jpg, png, bmp, pdf, tiff, single-frame gif and other formats, the image size does not exceed 10M.
200
Response
{"code": "200", "status": "SUCCESS", "date": "11/22/2023 10:29:45 PM", "result": {"rotated_image_height": 384, "image_angle": 0, "rotated_image_width": 660, "item_list": [{"value": "123456789012", "position": {"bottom": 132, "left": 293, "right": 549, "top": 102}, "key": "subpage_number", "confidence": 0.983}, {"value": " \u756a\u53f7 \u82b1\u5b50", "position": {"bottom": 154, "left": 277, "right": 359, "top": 140}, "key": "subpage_name", "confidence": 0.983}, {"value": "\u5e73\u6210\u5143\u5e743\u670831\u65e5\u751f", "position": {"bottom": 201, "left": 411, "right": 541, "top": 183}, "key": "subpage_date_of_birth", "confidence": 0.999}, {"value": "", "key": "homepage_name", "confidence": 0.9}, {"value": "", "key": "homepage_address", "confidence": 0.9}, {"value": "", "key": "homepage_gender", "confidence": 0.9}, {"value": "", "key": "homepage_date_of_birth", "confidence": 0.9}, {"value": "", "key": "homepage_valid_term", "confidence": 0.9}, {"value": "", "key": "homepage_issued_by", "confidence": 0.9}, {"value": "", "key": "homepage_data_of_remark", "confidence": 0.9}], "type": "japan_mynumber_card"}}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"code": {"type": "string"}, "status": {"type": "string"}, "date": {"type": "string"}, "result": {"type": "object", "properties": {"rotated_image_height": {"type": "integer"}, "image_angle": {"type": "integer"}, "rotated_image_width": {"type": "integer"}, "item_list": {"type": "array", "items": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}, "key": {"type": "string"}, "confidence": {"type": "number"}}, "required": ["confidence", "key", "value"]}}, "type": {"type": "string"}}, "required": ["image_angle", "item_list", "rotated_image_height", "rotated_image_width", "type"]}}, "required": ["code", "date", "result", "status"]}
241bb4fd-e153-4725-aec5-3fae8ef79052/a0c248c4-e513-4044-ba7a-d0be62bcd6e3/0/0
Age Detector
Age detection can be a challenging problem due to the variations in the aging of every individual depending on one’s health, lifestyle, etc. Analyzing the face of humans using computer vision can help estimate the age of humans as the face holds most of the important attributes showing the age of a person. The model estimates a person’s age from a picture.
8.8
Age detection from image
For more details contact us
200
Response
[{"face_coordinate": [225, 28, 322, 157], "age": 55}]
{"$schema": "http://json-schema.org/schema#", "type": "array", "items": {"type": "object", "properties": {"face_coordinate": {"type": "array", "items": {"type": "integer"}}, "age": {"type": "integer"}}, "required": ["age", "face_coordinate"]}}
61033125-6967-47d8-b2e8-80c800effc98/98f73d53-8f46-425c-802b-6c8951224463/1/0
Fashion
This Fashion API offers an image class-prediction algorithm for clothes and accessories. [![Telegram](https://img.shields.io/badge/-Telegram%20demo-white?logo=tele...
9.4
Analyse image and return results
Performs actual image analysis and responds with results. Image must be a regular JPEG or PNG image (with or without transparency) or PDF file. Usually such images have extensions: .jpg, .jpeg, .png, .pdf. In case of PDF each page will be converted to PNG image and processed separately. The service checks input file by MIME type and accepts the following types: image/jpeg image/png application/pdf The size of image file must be less than 16Mb.
200
Successful detection
{"results": [{"status": {"code": "ok", "message": "Success"}, "name": "image.jpg", "md5": "6ea449c4645b8811eef1342040725687", "width": 1024, "height": 768, "entities": [{"kind": "classes", "name": "fashion-classes", "classes": {"top, t-shirt, sweatshirt": 0.04409244656562805, "outwear": 0.008208364248275757, "vest": 0.3351793885231018, "shorts": 0.009493917226791382}}]}]}
{"type": "object", "properties": {"results": {"type": "array", "items": {"type": "object", "properties": {"status": {"type": "object", "properties": {"code": {"type": "string"}, "message": {"type": "string"}}}, "name": {"type": "string"}, "md5": {"type": "string"}, "entities": {"type": "array", "items": {"type": "object", "properties": {"kind": {"type": "string"}, "name": {"type": "string"}, "classes": {"type": "object"}}}}}}}}}
61033125-6967-47d8-b2e8-80c800effc98/98f73d53-8f46-425c-802b-6c8951224463/1/1
Fashion
This Fashion API offers an image class-prediction algorithm for clothes and accessories. [![Telegram](https://img.shields.io/badge/-Telegram%20demo-white?logo=tele...
9.4
Analyse image and return results
Performs actual image analysis and responds with results. Image must be a regular JPEG or PNG image (with or without transparency) or PDF file. Usually such images have extensions: .jpg, .jpeg, .png, .pdf. In case of PDF each page will be converted to PNG image and processed separately. The service checks input file by MIME type and accepts the following types: image/jpeg image/png application/pdf The size of image file must be less than 16Mb.
200
Unsupported media type
{"results": [{"status": {"code": "failure", "message": "Unsupported media type. Expected one of ['image/jpeg', 'image/png']. Got 'text/plain'."}, "name": "file.txt", "md5": "d41d8cd98f00b204e9800998ecf8427e", "entities": []}]}
{"type": "object", "properties": {"results": {"type": "array", "items": {"type": "object", "properties": {"status": {"type": "object", "properties": {"code": {"type": "string"}, "message": {"type": "string"}}}, "name": {"type": "string"}, "md5": {"type": "string"}, "entities": {"type": "array", "items": {"type": "object", "properties": {"kind": {"type": "string"}, "name": {"type": "string"}, "classes": {"type": "object"}}}}}}}}}
61033125-6967-47d8-b2e8-80c800effc98/98f73d53-8f46-425c-802b-6c8951224463/2/0
Fashion
This Fashion API offers an image class-prediction algorithm for clothes and accessories. [![Telegram](https://img.shields.io/badge/-Telegram%20demo-white?logo=tele...
9.4
Analyse image and return results
Performs actual image analysis and responds with results. Image must be a regular JPEG or PNG image (with or without transparency) or PDF file. Usually such images have extensions: .jpg, .jpeg, .png, .pdf. In case of PDF each page will be converted to PNG image and processed separately. The service checks input file by MIME type and accepts the following types: image/jpeg image/png application/pdf The size of image file must be less than 16Mb.
422
Missing image/url
{"detail": "Missing image or url field."}
{"type": "object", "properties": {"detail": {"type": "string"}}}
071eb531-0b48-4a56-bf4b-126c54797635/b3fff70f-9eab-4723-899d-2d83c9e45a44/0/0
Free AI OCR Optical Character Recognition
Free AI OCR Optical Character Recognition
5
/recognize-character
200
null
{"status": 1, "url": "http://vibktprfx-prod-prod-damo-eas-cn-shanghai.oss-cn-shanghai.aliyuncs.com/generative-cartoon/2023-09-09/1d73851a-7d53-416b-8606-01dc2f09db52/20230909_235408006889_dmbpxu56o3.jpg?Expires=1694276651&OSSAccessKeyId=LTAI4FoLmvQ9urWXgSRpDvh1&Signature=%2FcT4QU5F7%2FIR2J9Z9a3lvUnwdbI%3D"}
{"type": "object", "properties": {"status": {"type": "integer"}, "url": {"type": "string"}}, "required": ["status", "url"], "x-apifox-ignore-properties": [], "x-apifox-orders": ["status", "url"]}
c6bc5191-1f8f-4511-8978-fcf186e40729/5777662b-8c5c-436a-ac56-71a6c2015df3/0/0
U.S. Driver License OCR
Extract the 15 key forms on the front of your driver's license from 51 U.S. state driver's licenses, including DL class, date of birth, issued date, gender, height, expiry date, license number, restrictions, eys, END, DD, first name, last name, address, building.
6
U.S. Driver License OCR
Support jpg, png, bmp, pdf, tiff, single-frame gif and other formats, the image size does not exceed 10M.
200
Response
{"code": "200", "status": "SUCCESS", "date": "11/22/2023 11:25:52 PM", "result": {"rotated_image_height": 341, "image_angle": 0, "rotated_image_width": 533, "item_list": [{"value": "NONE", "position": {"bottom": 292, "left": 217, "right": 257, "top": 280}, "key": "endorsement"}, {"value": "06-09-85", "position": {"bottom": 260, "left": 246, "right": 317, "top": 244}, "key": "date_of_birth"}, {"value": "ANYTOWN", "position": {"bottom": 241, "left": 198, "right": 289, "top": 224}, "key": "city"}, {"value": "09-30-08", "position": {"bottom": 319, "left": 250, "right": 298, "top": 307}, "key": "issue_date"}, {"value": "SAMPLE,LICENSE", "position": {"bottom": 205, "left": 201, "right": 348, "top": 189}, "key": "given_name"}, {"value": "DOCUMENT", "position": {"bottom": 188, "left": 199, "right": 296, "top": 175}, "key": "family_name"}, {"value": "NY", "position": {"bottom": 239, "left": 282, "right": 311, "top": 223}, "key": "state"}, {"value": "", "key": "sex"}, {"value": "10-01-16", "position": {"bottom": 320, "left": 356, "right": 408, "top": 307}, "key": "date_of_expiry"}, {"value": "2345", "position": {"bottom": 224, "left": 198, "right": 245, "top": 208}, "key": "building_number"}, {"value": "", "key": "eyes"}, {"value": "ANYPLACE AVE", "position": {"bottom": 224, "left": 235, "right": 364, "top": 209}, "key": "street"}, {"value": "", "key": "identification_number"}, {"value": "5-09", "position": {"bottom": 281, "left": 288, "right": 354, "top": 264}, "key": "height"}, {"value": "12345", "position": {"bottom": 241, "left": 312, "right": 363, "top": 224}, "key": "post_code"}, {"value": "NONE", "position": {"bottom": 292, "left": 217, "right": 257, "top": 280}, "key": "restriction"}, {"value": "012 345 678", "position": {"bottom": 169, "left": 234, "right": 372, "top": 148}, "key": "driver_license_number"}, {"value": "D", "position": {"bottom": 172, "left": 489, "right": 516, "top": 146}, "key": "class"}], "type": ""}}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"code": {"type": "string"}, "status": {"type": "string"}, "date": {"type": "string"}, "result": {"type": "object", "properties": {"rotated_image_height": {"type": "integer"}, "image_angle": {"type": "integer"}, "rotated_image_width": {"type": "integer"}, "item_list": {"type": "array", "items": {"type": "object", "properties": {"value": {"type": "string"}, "position": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}, "required": ["bottom", "left", "right", "top"]}, "key": {"type": "string"}}, "required": ["key", "value"]}}, "type": {"type": "string"}}, "required": ["image_angle", "item_list", "rotated_image_height", "rotated_image_width", "type"]}}, "required": ["code", "date", "result", "status"]}
9a8129ba-2305-4acc-8036-73c2cc04be54/a9c0e56e-fe35-4d85-bf0a-fba415a18e27/0/0
Regim
API for extracting data from image: colors, objects, face recognition and etc.
8.8
Dominant colors
Get colors service
422
Example_1
{"detail": [{"loc": [], "msg": "", "type": ""}]}
{"title": "HTTPValidationError", "type": "object", "properties": {"detail": {"title": "Detail", "type": "array", "items": {"title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": {"loc": {"title": "Location", "type": "array", "items": {"type": "string"}}, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}}}}}}
9a8129ba-2305-4acc-8036-73c2cc04be54/a9c0e56e-fe35-4d85-bf0a-fba415a18e27/1/0
Regim
API for extracting data from image: colors, objects, face recognition and etc.
8.8
Dominant colors
Get colors service
200
Example_1
{"data": {"exif": {}, "colors": [], "closestColors": [], "geodata": {}, "objects": [], "segments": [], "objectsShortList": [], "objectsCount": {}, "translated": {}, "faces": [], "img_res": "", "rotation": {}, "orientation": ""}, "info": {"args": {}, "exectime": "", "error": "", "def_palette": {}}}
{"title": "remoC", "type": "object", "properties": {"data": {"title": "dataC", "type": "object", "properties": {"exif": {"title": "Exif", "type": "object"}, "colors": {"title": "Colors", "type": "array", "items": {}}, "closestColors": {"title": "Closestcolors", "type": "array", "items": {}}, "geodata": {"title": "Geodata", "type": "object"}, "objects": {"title": "Objects", "type": "array", "items": {"type": "object"}}, "segments": {"title": "Segments", "type": "array", "items": {}}, "objectsShortList": {"title": "Objectsshortlist", "type": "array", "items": {}}, "objectsCount": {"title": "Objectscount", "type": "object"}, "translated": {"title": "Translated", "type": "object"}, "faces": {"title": "Faces", "type": "array", "items": {}}, "img_res": {"title": "Img Res", "type": "string"}, "rotation": {"title": "Rotation", "type": "object"}, "orientation": {"title": "Orientation", "type": "string"}}}, "info": {"title": "infoC", "type": "object", "properties": {"args": {"title": "Args", "type": "object"}, "exectime": {"title": "Exectime", "type": "string"}, "error": {"title": "Error", "type": "string"}, "def_palette": {"title": "Def Palette", "type": "object"}}}}}
9a8129ba-2305-4acc-8036-73c2cc04be54/e009d30e-14b6-45bd-ba77-d3fe81a636b4/0/0
Regim
API for extracting data from image: colors, objects, face recognition and etc.
8.8
Object recognition and segmentation
Object segmentation
422
Example_1
{"detail": [{"loc": [], "msg": "", "type": ""}]}
{"title": "HTTPValidationError", "type": "object", "properties": {"detail": {"title": "Detail", "type": "array", "items": {"title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": {"loc": {"title": "Location", "type": "array", "items": {"type": "string"}}, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}}}}}}
9a8129ba-2305-4acc-8036-73c2cc04be54/e009d30e-14b6-45bd-ba77-d3fe81a636b4/1/0
Regim
API for extracting data from image: colors, objects, face recognition and etc.
8.8
Object recognition and segmentation
Object segmentation
200
Example_1
{"data": {"exif": {}, "colors": [], "geodata": {}, "objects": [], "segments": [], "objectsShortList": [], "objectsCount": {}, "translated": {}, "faces": [], "img_res": "", "rotation": {}, "orientation": ""}, "info": {"args": {}, "exectime": "", "error": ""}}
{"title": "remo", "type": "object", "properties": {"data": {"title": "data", "type": "object", "properties": {"exif": {"title": "Exif", "type": "object"}, "colors": {"title": "Colors", "type": "array", "items": {}}, "geodata": {"title": "Geodata", "type": "object"}, "objects": {"title": "Objects", "type": "array", "items": {"type": "object"}}, "segments": {"title": "Segments", "type": "array", "items": {}}, "objectsShortList": {"title": "Objectsshortlist", "type": "array", "items": {}}, "objectsCount": {"title": "Objectscount", "type": "object"}, "translated": {"title": "Translated", "type": "object"}, "faces": {"title": "Faces", "type": "array", "items": {}}, "img_res": {"title": "Img Res", "type": "string"}, "rotation": {"title": "Rotation", "type": "object"}, "orientation": {"title": "Orientation", "type": "string"}}}, "info": {"title": "info", "type": "object", "properties": {"args": {"title": "Args", "type": "object"}, "exectime": {"title": "Exectime", "type": "string"}, "error": {"title": "Error", "type": "string"}}}}}
f739467e-1cc5-491d-a659-5a089651ed17/69aaf8ee-482b-48ee-9f7b-c72271dd1ef7/0/0
Scene Classification
Scene Classification This scene classification model identifies the scenes in images and videos at scale. The model checks the scene location (indoor/outdoor) and groups them under different categories based on their attributes. It returns multiple scene labels and detailed attributes. Scene classification API is used to detect indoor and outdoor scenes in an image.
7.4
Scene classification from image
For more details contact us
200
Response
{"Indoor": false, "categories": ["wheat_field", "hayfield", "corn_field", "farm", "pasture"], "attributes": ["open area", "natural", "natural light", "vegetation", "far-away horizon", "grass", "camping", "sunny", "foliage"]}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"Indoor": {"type": "boolean"}, "categories": {"type": "array", "items": {"type": "string"}}, "attributes": {"type": "array", "items": {"type": "string"}}}, "required": ["Indoor", "attributes", "categories"]}
44f5400d-14af-4abb-ad12-044a94611ffc/4d25038a-b13b-461b-8526-18bad17049b0/0/0
Change facial expressions
Use advanced image processing technology to edit the expressions of human faces in images. Supports application scenarios such as real-time effects and photo editing.
8.1
Change facial expressions
Change facial expressions
401
Example
{"message": "Invalid API key in request"}
{"message": {"type": "String", "required": true, "example": "Invalid API key in request", "description": "Error Message."}}
44f5400d-14af-4abb-ad12-044a94611ffc/4d25038a-b13b-461b-8526-18bad17049b0/1/0
Change facial expressions
Use advanced image processing technology to edit the expressions of human faces in images. Supports application scenarios such as real-time effects and photo editing.
8.1
Change facial expressions
Change facial expressions
200
Success
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 0, "data": {"image": ""}}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image": {"type": "String", "required": false, "description": "The result image, returning the Base64 encoding of the image."}}}}
44f5400d-14af-4abb-ad12-044a94611ffc/4d25038a-b13b-461b-8526-18bad17049b0/1/1
Change facial expressions
Use advanced image processing technology to edit the expressions of human faces in images. Supports application scenarios such as real-time effects and photo editing.
8.1
Change facial expressions
Change facial expressions
200
Error
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 400, "error_code_str": "ERROR_PARAMETERS", "error_msg": "image cannot be empty"}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image": {"type": "String", "required": false, "description": "The result image, returning the Base64 encoding of the image."}}}}
cc826ee7-97c6-4094-b23f-d27fc4a1656f/8654a659-baec-4f82-b78a-efefdf819e91/1/0
NSFW
This API processes images and detects sexual content in them, marking the images as Safe For Work (SFW) or Not Safe For Work (NSFW). [![Telegram](https://img.shields.io/ba...
9.6
Analyse image and return results
Performs actual image analysis and responds with results. Image must be a regular JPEG or PNG image (with or without transparency) or PDF file. Usually such images have extensions: .jpg, .jpeg, .png, .pdf. In case of PDF each page will be converted to PNG image and processed separately. The service checks input file by MIME type and accepts the following types: image/jpeg image/png application/pdf The size of image file must be less than 16Mb.
422
Missing image/url
{"detail": "Missing image or url field."}
{"type": "object", "properties": {"detail": {"type": "string"}}}
cc826ee7-97c6-4094-b23f-d27fc4a1656f/8654a659-baec-4f82-b78a-efefdf819e91/2/0
NSFW
This API processes images and detects sexual content in them, marking the images as Safe For Work (SFW) or Not Safe For Work (NSFW). [![Telegram](https://img.shields.io/ba...
9.6
Analyse image and return results
Performs actual image analysis and responds with results. Image must be a regular JPEG or PNG image (with or without transparency) or PDF file. Usually such images have extensions: .jpg, .jpeg, .png, .pdf. In case of PDF each page will be converted to PNG image and processed separately. The service checks input file by MIME type and accepts the following types: image/jpeg image/png application/pdf The size of image file must be less than 16Mb.
200
Unsupported media type
{"results": [{"status": {"code": "failure", "message": "Unsupported media type. Expected one of ['image/jpeg', 'image/png']. Got 'text/plain'."}, "name": "file.txt", "md5": "d41d8cd98f00b204e9800998ecf8427e", "entities": []}]}
{"type": "object", "properties": {"results": {"type": "array", "items": {"type": "object", "properties": {"status": {"type": "object", "properties": {"code": {"type": "string"}, "message": {"type": "string"}}}, "name": {"type": "string"}, "md5": {"type": "string"}, "entities": {"type": "array", "items": {"type": "object", "properties": {"kind": {"type": "string"}, "name": {"type": "string"}, "classes": {"type": "object", "properties": {"nsfw": {"type": "number"}, "sfw": {"type": "number"}}}}}}}}}}}
cc826ee7-97c6-4094-b23f-d27fc4a1656f/8654a659-baec-4f82-b78a-efefdf819e91/2/1
NSFW
This API processes images and detects sexual content in them, marking the images as Safe For Work (SFW) or Not Safe For Work (NSFW). [![Telegram](https://img.shields.io/ba...
9.6
Analyse image and return results
Performs actual image analysis and responds with results. Image must be a regular JPEG or PNG image (with or without transparency) or PDF file. Usually such images have extensions: .jpg, .jpeg, .png, .pdf. In case of PDF each page will be converted to PNG image and processed separately. The service checks input file by MIME type and accepts the following types: image/jpeg image/png application/pdf The size of image file must be less than 16Mb.
200
Successful classification
{"results": [{"status": {"code": "ok", "message": "Success"}, "name": "nsfw.jpg", "md5": "6ea449c4645b8811eef1342040725687", "width": 1024, "height": 768, "entities": [{"kind": "classes", "name": "nsfw-classes", "classes": {"nsfw": 0.9582930970937014, "sfw": 0.04170693515334278}}]}]}
{"type": "object", "properties": {"results": {"type": "array", "items": {"type": "object", "properties": {"status": {"type": "object", "properties": {"code": {"type": "string"}, "message": {"type": "string"}}}, "name": {"type": "string"}, "md5": {"type": "string"}, "entities": {"type": "array", "items": {"type": "object", "properties": {"kind": {"type": "string"}, "name": {"type": "string"}, "classes": {"type": "object", "properties": {"nsfw": {"type": "number"}, "sfw": {"type": "number"}}}}}}}}}}}
735be234-4f1f-433b-9692-7bdeeb7f75e6/25c51e44-f522-4ab3-881f-c87fc8e33b7b/0/0
Cloudlabs Image Object Detection
Detect multiple objects in an image, extract detected object names
7.6
objectDetection (by Image URL)
This endpoint is used to detect objects via image URL
200
Response
{"status": "success", "count": 4, "objects": [{"name": "Laptop", "score": 0.8891823, "bounding": {"startX": 135, "startY": 127, "endX": 296, "endY": 270}}, {"name": "Computer keyboard", "score": 0.8127809, "bounding": {"startX": 434, "startY": 190, "endX": 598, "endY": 255}}, {"name": "Table", "score": 0.7982011, "bounding": {"startX": 41, "startY": 138, "endX": 771, "endY": 391}}, {"name": "Computer keyboard", "score": 0.69485223, "bounding": {"startX": 160, "startY": 204, "endX": 274, "endY": 256}}]}
{"type": "object", "properties": {"status": {"type": "string"}, "count": {"type": "integer"}, "objects": {"type": "array", "items": {"type": "object", "properties": {"name": {"type": "string"}, "score": {"type": "number"}, "bounding": {"type": "object", "properties": {"startX": {"type": "integer"}, "startY": {"type": "integer"}, "endX": {"type": "integer"}, "endY": {"type": "integer"}}}}}}}}
735be234-4f1f-433b-9692-7bdeeb7f75e6/f1094165-7efe-4240-a578-909fda362889/0/0
Cloudlabs Image Object Detection
Detect multiple objects in an image, extract detected object names
7.6
objectDetection (by Image Upload)
This endpoint is used to detect objects via image File upload
200
Response
{"status": "success", "count": 4, "objects": [{"name": "Laptop", "score": 0.8891823, "bounding": {"startX": 135, "startY": 127, "endX": 296, "endY": 270}}, {"name": "Computer keyboard", "score": 0.8127809, "bounding": {"startX": 434, "startY": 190, "endX": 598, "endY": 255}}, {"name": "Table", "score": 0.7982011, "bounding": {"startX": 41, "startY": 138, "endX": 771, "endY": 391}}, {"name": "Computer keyboard", "score": 0.69485223, "bounding": {"startX": 160, "startY": 204, "endX": 274, "endY": 256}}]}
{"type": "object", "properties": {"status": {"type": "string"}, "count": {"type": "integer"}, "objects": {"type": "array", "items": {"type": "object", "properties": {"name": {"type": "string"}, "score": {"type": "number"}, "bounding": {"type": "object", "properties": {"startX": {"type": "integer"}, "startY": {"type": "integer"}, "endX": {"type": "integer"}, "endY": {"type": "integer"}}}}}}}}
6a2132de-1c2d-4de6-abff-38e1e99f0a62/98389214-31c8-41d7-9024-3a3b3f539acb/0/0
Hairstyle changer
Based on deep learning algorithm, it can add bangs, change long hair, increase the number of hair and other operations to the hairstyle of portrait. In addition to helping users intuitively experience a variety of hair designs and improving the personalized experience of customers in the beauty and hairdressing industry, it can also be used in short videos, social platforms, or integrated into album-type apps to add hair editing play to users' personalized photos to achieve interactive partic...
8
Hairstyle changer
Hairstyle changer
200
Success
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 0, "data": {"image": ""}}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image": {"type": "String", "required": false, "description": "The result image, returning the Base64 encoding of the image."}}}}
6a2132de-1c2d-4de6-abff-38e1e99f0a62/98389214-31c8-41d7-9024-3a3b3f539acb/0/1
Hairstyle changer
Based on deep learning algorithm, it can add bangs, change long hair, increase the number of hair and other operations to the hairstyle of portrait. In addition to helping users intuitively experience a variety of hair designs and improving the personalized experience of customers in the beauty and hairdressing industry, it can also be used in short videos, social platforms, or integrated into album-type apps to add hair editing play to users' personalized photos to achieve interactive partic...
8
Hairstyle changer
Hairstyle changer
200
Error
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 400, "error_code_str": "ERROR_PARAMETERS", "error_msg": "image cannot be empty"}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}, "data": {"type": "Object", "required": false, "description": "The content of the result data returned.", "properties": {"image": {"type": "String", "required": false, "description": "The result image, returning the Base64 encoding of the image."}}}}
6a2132de-1c2d-4de6-abff-38e1e99f0a62/98389214-31c8-41d7-9024-3a3b3f539acb/1/0
Hairstyle changer
Based on deep learning algorithm, it can add bangs, change long hair, increase the number of hair and other operations to the hairstyle of portrait. In addition to helping users intuitively experience a variety of hair designs and improving the personalized experience of customers in the beauty and hairdressing industry, it can also be used in short videos, social platforms, or integrated into album-type apps to add hair editing play to users' personalized photos to achieve interactive partic...
8
Hairstyle changer
Hairstyle changer
401
Example
{"message": "Invalid API key in request"}
{"message": {"type": "String", "required": true, "example": "Invalid API key in request", "description": "Error Message."}}
1e7451f7-8747-4592-b7df-23cfacb0cd2d/fb855d97-9564-4889-9550-8e0e6a789a61/0/0
Face Analyzer
Using cutting-edge AI technology, our API offers comprehensive facial analysis for a given image, providing detailed information about the detected face, including facial position, facial attributes (such as gender, age, expression, attractiveness, eyewear, hairstyle, mask presence, and pose), as well as facial quality metrics (including overall quality score, blur score, lighting score, and facial feature occlusion score).
7.2
Face Analyzer
Face Analyzer
401
Example
{"message": "Invalid API key in request"}
{"type": "object", "properties": {"message": {"type": "string", "required": true, "example": "Invalid API key in request", "description": "Error Message."}}}
1e7451f7-8747-4592-b7df-23cfacb0cd2d/fb855d97-9564-4889-9550-8e0e6a789a61/1/0
Face Analyzer
Using cutting-edge AI technology, our API offers comprehensive facial analysis for a given image, providing detailed information about the detected face, including facial position, facial attributes (such as gender, age, expression, attractiveness, eyewear, hairstyle, mask presence, and pose), as well as facial quality metrics (including overall quality score, blur score, lighting score, and facial feature occlusion score).
7.2
Face Analyzer
Face Analyzer
200
Success
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 0, "image_width": 0, "image_height": 0, "face_detail_infos": [{"face_rect": {"x": 0, "y": 0, "width": 0, "height": 0}, "face_detail_attributes_info": {"age": 0, "beauty": 0, "emotion": {"type": 0, "probability": 0}, "eye": {"glass": {"type": 0, "probability": 0.99936753511429}, "eye_open": {"type": 0, "probability": 0.99949336051941}, "eyelid_type": {"type": 1, "probability": 0.75467920303345}, "eye_size": {"type": 2, "probability": 0.59152442216873}}, "eyebrow": {"eyebrow_density": {"type": 0, "probability": 0}, "eyebrow_curve": {"type": 0, "probability": 0}, "eyebrow_length": {"type": 0, "probability": 0}}, "gender": {"type": 0, "probability": 0}, "hair": {"length": {"type": 0, "probability": 0}, "bang": {"type": 0, "probability": 0}, "color": {"type": 0, "probability": 0}}, "hat": {"style": {"type": 0, "probability": 0}, "color": {"type": 0, "probability": 0}}, "head_pose": {"pitch": 0, "yaw": 0, "roll": 0}, "mask": {"type": 0, "probability": 0}, "mouth": {"mouth_open": {"type": 0, "probability": 0}}, "moustache": {"type": 0, "probability": 0}, "nose": {"type": 2, "probability": 0.75233882665634}, "shape": {"type": 0, "probability": 0}, "skin": {"type": 0, "probability": 0}, "smile": 0}}]}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}}
1e7451f7-8747-4592-b7df-23cfacb0cd2d/fb855d97-9564-4889-9550-8e0e6a789a61/1/1
Face Analyzer
Using cutting-edge AI technology, our API offers comprehensive facial analysis for a given image, providing detailed information about the detected face, including facial position, facial attributes (such as gender, age, expression, attractiveness, eyewear, hairstyle, mask presence, and pose), as well as facial quality metrics (including overall quality score, blur score, lighting score, and facial feature occlusion score).
7.2
Face Analyzer
Face Analyzer
200
Error
{"request_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "log_id": "3A9BFC5E-3F7C-4D9A-9445-908C6D14AB5B", "error_code": 400, "error_code_str": "ERROR_PARAMETERS", "error_msg": "image cannot be empty"}
{"request_id": {"type": "string", "required": false, "description": "Request ID."}, "log_id": {"type": "string", "required": false, "description": "Log ID."}, "error_code": {"type": "integer", "required": false, "description": "Error Code."}, "error_code_str": {"type": "string", "required": false, "description": "Error Code."}, "error_msg": {"type": "string", "required": false, "description": "Error Message."}}
644fb82d-3c8e-44a0-9466-8362b79a0a7d/79b147af-7aef-4eac-8a99-d6e208c1816f/0/0
Object Detection
Extract list of text, boundingBox, score, locale and dimensions from image using (google vision object detection)
null
GET Logo Detection
the important thing is that you should use image as a query name Example (url?image=“image_url”)
200
New Example
{"objects": [{"text": "Chair", "score": 0.843457818031311, "locale": "", "boundingBox": {"tl": {"x": 0.045202311128377914, "y": 0.6389181017875671}, "tr": {"x": 0.4727531671524048, "y": 0.6389181017875671}, "br": {"x": 0.4727531671524048, "y": 0.9685030579566956}, "bl": {"x": 0.045202311128377914, "y": 0.9685030579566956}}}, {"text": "Umbrella", "score": 0.6488758325576782, "locale": "", "boundingBox": {"tl": {"x": 0.18290652334690094, "y": 0.23769409954547882}, "tr": {"x": 0.9811277389526367, "y": 0.23769409954547882}, "br": {"x": 0.9811277389526367, "y": 0.9368109107017517}, "bl": {"x": 0.18290652334690094, "y": 0.9368109107017517}}}], "success": true, "dimensions": {"height": 1200, "width": 1020, "type": "webp"}}
{"type": "object", "properties": {"objects": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string"}, "score": {"type": "number"}, "locale": {"type": "string"}, "boundingBox": {"type": "object", "properties": {"tl": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}}, "tr": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}}, "br": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}}, "bl": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}}}}}}}, "success": {"type": "boolean"}, "dimensions": {"type": "object", "properties": {"height": {"type": "integer"}, "width": {"type": "integer"}, "type": {"type": "string"}}}}}
644fb82d-3c8e-44a0-9466-8362b79a0a7d/b0442ef5-c96c-4ae2-b8a6-776e57d4ca27/0/0
Object Detection
Extract list of text, boundingBox, score, locale and dimensions from image using (google vision object detection)
null
POST Object Detection
the important thing is that you should use image as a form_data key Example const data = new FormData(); data.append(‘image’, ‘image_path’);
200
New Example
{"objects": [{"text": "Chair", "score": 0.843457818031311, "locale": "", "boundingBox": {"tl": {"x": 0.045202311128377914, "y": 0.6389181017875671}, "tr": {"x": 0.4727531671524048, "y": 0.6389181017875671}, "br": {"x": 0.4727531671524048, "y": 0.9685030579566956}, "bl": {"x": 0.045202311128377914, "y": 0.9685030579566956}}}, {"text": "Umbrella", "score": 0.6488758325576782, "locale": "", "boundingBox": {"tl": {"x": 0.18290652334690094, "y": 0.23769409954547882}, "tr": {"x": 0.9811277389526367, "y": 0.23769409954547882}, "br": {"x": 0.9811277389526367, "y": 0.9368109107017517}, "bl": {"x": 0.18290652334690094, "y": 0.9368109107017517}}}], "success": true, "dimensions": {"height": 1200, "width": 1020, "type": "webp"}}
{"type": "object", "properties": {"objects": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string"}, "score": {"type": "number"}, "locale": {"type": "string"}, "boundingBox": {"type": "object", "properties": {"tl": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}}, "tr": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}}, "br": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}}, "bl": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}}}}}}}, "success": {"type": "boolean"}, "dimensions": {"type": "object", "properties": {"height": {"type": "integer"}, "width": {"type": "integer"}, "type": {"type": "string"}}}}}
a3b83cf2-6c5c-4028-848e-3d192b44af3e/a49b7647-fd90-4233-a3bd-e32eed8f4745/0/0
Car License Plate Detection
Use an API to perform license plate or car recognition
0.2
Car recognition
Send a URL with the cars and get the coordinates of the boxes with the cars inside and license plates. You can also get confidence, license plate number and country. Note: Please REAM ME and documentation for more information.
400
BAD Example
{"status": "fail", "result": [], "message": "invalid image_url"}
{"type": "object", "properties": {"status": {"type": "string"}, "result": {"type": "array"}, "message": {"type": "string"}}}
a3b83cf2-6c5c-4028-848e-3d192b44af3e/a49b7647-fd90-4233-a3bd-e32eed8f4745/1/0
Car License Plate Detection
Use an API to perform license plate or car recognition
0.2
Car recognition
Send a URL with the cars and get the coordinates of the boxes with the cars inside and license plates. You can also get confidence, license plate number and country. Note: Please REAM ME and documentation for more information.
200
OK Example
{"status": "success", "result": [{"license_plate": {"number": "H222HH47", "confidence": 0.97848624, "license_plate_coordinates": {"bottom": 514, "left": 556, "right": 728, "top": 441}, "license_plate_visibility": [{"confidence": 0.9132972, "name": "fully_visible"}, {"confidence": 0.049986165, "name": "invisible"}, {"confidence": 0.016093468, "name": "partly_visible_no_text"}, {"confidence": 0.012294045, "name": "partly_visible"}, {"confidence": 0.008329197, "name": "fully_visible_no_text"}], "country": [{"confidence": 0.99999976, "name": "RU"}, {"confidence": 1.3062662e-07, "name": "BY"}, {"confidence": 4.773197e-08, "name": "AE"}, {"confidence": 2.299932e-08, "name": "UZ"}, {"confidence": 1.7414985e-08, "name": "LV"}, {"confidence": 6.135722e-09, "name": "KZ"}, {"confidence": 4.8630504e-09, "name": "TJ"}, {"confidence": 1.6597818e-09, "name": "EST"}, {"confidence": 1.3707686e-09, "name": "SA"}, {"confidence": 1.1437e-09, "name": "SRB"}, {"confidence": 9.423607e-10, "name": "TM"}, {"confidence": 6.842398e-10, "name": "KG"}, {"confidence": 4.10423e-10, "name": "AM"}, {"confidence": 2.733928e-10, "name": "LT"}, {"confidence": 2.0497787e-10, "name": "MD"}, {"confidence": 1.4537214e-10, "name": "FIN"}, {"confidence": 1.2323746e-10, "name": "GE"}, {"confidence": 7.907517e-11, "name": "AZ"}, {"confidence": 7.140562e-11, "name": "MX"}, {"confidence": 3.9685043e-11, "name": "UA"}, {"confidence": 1.9218491e-11, "name": "AR"}, {"confidence": 1.6187543e-11, "name": "BR"}, {"confidence": 7.3318435e-12, "name": "IN"}, {"confidence": 1.5106668e-12, "name": "VN"}]}, "car": {"car_coordinates": {"bottom": 635, "left": 28, "right": 821, "top": 24}, "orientation": [{"confidence": 0.8820999, "name": "front"}, {"confidence": 0.06136949, "name": "back"}, {"confidence": 0.056530543, "name": "side"}]}}], "message": "1 cars detected"}
{"type": "object", "properties": {"status": {"type": "string"}, "result": {"type": "array", "items": {"type": "object", "properties": {"license_plate": {"type": "object", "properties": {"number": {"type": "string"}, "confidence": {"type": "number"}, "license_plate_coordinates": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}}, "license_plate_visibility": {"type": "array", "items": {"type": "object", "properties": {"confidence": {"type": "number"}, "name": {"type": "string"}}}}, "country": {"type": "array", "items": {"type": "object", "properties": {"confidence": {"type": "number"}, "name": {"type": "string"}}}}}}, "car": {"type": "object", "properties": {"car_coordinates": {"type": "object", "properties": {"bottom": {"type": "integer"}, "left": {"type": "integer"}, "right": {"type": "integer"}, "top": {"type": "integer"}}}, "orientation": {"type": "array", "items": {"type": "object", "properties": {"confidence": {"type": "number"}, "name": {"type": "string"}}}}}}}}}, "message": {"type": "string"}}}
78474dc8-4c7e-407c-bb84-01fc49b90e28/d1eb7677-c948-4409-ab5f-4d179f0cbda9/0/0
Free Recognized Video Content
Free Recognized Video Content
null
/recognize-video-detail
200
null
{"status": 1, "url": "http://vibktprfx-prod-prod-damo-eas-cn-shanghai.oss-cn-shanghai.aliyuncs.com/generative-cartoon/2023-09-09/1d73851a-7d53-416b-8606-01dc2f09db52/20230909_235408006889_dmbpxu56o3.jpg?Expires=1694276651&OSSAccessKeyId=LTAI4FoLmvQ9urWXgSRpDvh1&Signature=%2FcT4QU5F7%2FIR2J9Z9a3lvUnwdbI%3D"}
{"type": "object", "properties": {"status": {"type": "integer"}, "url": {"type": "string"}}, "required": ["status", "url"], "x-apifox-ignore-properties": [], "x-apifox-orders": ["status", "url"]}
78474dc8-4c7e-407c-bb84-01fc49b90e28/45e5f066-3271-4525-a5de-62ce74f8f625/0/0
Free Recognized Video Content
Free Recognized Video Content
null
/recognize-video
200
null
{"status": 1, "url": "http://vibktprfx-prod-prod-damo-eas-cn-shanghai.oss-cn-shanghai.aliyuncs.com/generative-cartoon/2023-09-09/1d73851a-7d53-416b-8606-01dc2f09db52/20230909_235408006889_dmbpxu56o3.jpg?Expires=1694276651&OSSAccessKeyId=LTAI4FoLmvQ9urWXgSRpDvh1&Signature=%2FcT4QU5F7%2FIR2J9Z9a3lvUnwdbI%3D"}
{"type": "object", "properties": {"status": {"type": "integer"}, "url": {"type": "string"}}, "required": ["status", "url"], "x-apifox-ignore-properties": [], "x-apifox-orders": ["status", "url"]}
ee87db13-900a-4635-a44a-07acb6cb3762/a841600a-2ec5-4b88-a5fa-53022728efd6/0/0
Logo Detection
Extract text, boundingBox, score, locale and dimensions from image using (google vision logo detection)
5.1
GET Logo Detection
the important thing is that you should use image as a query name Example (url?image=“image_url”)
200
New Example
{"logos": [{"text": "Apple Inc.", "score": 0.9511095881462097, "locale": "", "boundingBox": {"tl": {"x": 919, "y": 38}, "tr": {"x": 2998, "y": 38}, "br": {"x": 2998, "y": 2066}, "bl": {"x": 919, "y": 2066}}}], "success": true, "dimensions": {"height": 2160, "width": 3840, "type": "png"}}
{"type": "object", "properties": {"logos": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string"}, "score": {"type": "number"}, "locale": {"type": "string"}, "boundingBox": {"type": "object", "properties": {"tl": {"type": "object", "properties": {"x": {"type": "integer"}, "y": {"type": "integer"}}}, "tr": {"type": "object", "properties": {"x": {"type": "integer"}, "y": {"type": "integer"}}}, "br": {"type": "object", "properties": {"x": {"type": "integer"}, "y": {"type": "integer"}}}, "bl": {"type": "object", "properties": {"x": {"type": "integer"}, "y": {"type": "integer"}}}}}}}}, "success": {"type": "boolean"}, "dimensions": {"type": "object", "properties": {"height": {"type": "integer"}, "width": {"type": "integer"}, "type": {"type": "string"}}}}}
ee87db13-900a-4635-a44a-07acb6cb3762/f9181c4f-06f2-4440-bea4-add416f01036/0/0
Logo Detection
Extract text, boundingBox, score, locale and dimensions from image using (google vision logo detection)
5.1
POST Logo Detection
the important thing is that you should use image as a form_data key Example const data = new FormData(); data.append(‘image’, ‘image_path’);
200
New Example
{"logos": [{"text": "Apple Inc.", "score": 0.9511095881462097, "locale": "", "boundingBox": {"tl": {"x": 919, "y": 38}, "tr": {"x": 2998, "y": 38}, "br": {"x": 2998, "y": 2066}, "bl": {"x": 919, "y": 2066}}}], "success": true, "dimensions": {"height": 2160, "width": 3840, "type": "png"}}
{"type": "object", "properties": {"logos": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string"}, "score": {"type": "number"}, "locale": {"type": "string"}, "boundingBox": {"type": "object", "properties": {"tl": {"type": "object", "properties": {"x": {"type": "integer"}, "y": {"type": "integer"}}}, "tr": {"type": "object", "properties": {"x": {"type": "integer"}, "y": {"type": "integer"}}}, "br": {"type": "object", "properties": {"x": {"type": "integer"}, "y": {"type": "integer"}}}, "bl": {"type": "object", "properties": {"x": {"type": "integer"}, "y": {"type": "integer"}}}}}}}}, "success": {"type": "boolean"}, "dimensions": {"type": "object", "properties": {"height": {"type": "integer"}, "width": {"type": "integer"}, "type": {"type": "string"}}}}}
719dc5e9-1ffc-4b97-b8e7-d939d4275369/bbf9ef82-a01f-4a32-9bb8-8168192bc34e/0/0
Webit Face
Face Detection, Verification, Similarity, Age, Gender, Race, Emotion, Landmarks and Parts analysis.
6
Face Parts and Landmarks
Perform A.I. powered Face Landmarks detection in order to extract face parts coordinates, lines and landmarks from multiple faces in bounding boxes.
200
Response
{"status": "success", "data": {"input_source": "url", "faces": [{"face_id": 1, "landmarks": [{"confidence": 0.80371, "part": "nose", "coordinates": {"x": 47.23809523809524, "y": 40.714285714285715}, "adiacent_parts": ["right_eye", "left_eye"]}, {"confidence": 0.34216, "part": "neck", "coordinates": {"x": 43.04761904761905, "y": 53.857142857142854}, "adiacent_parts": ["nose"]}, {"confidence": 0.75839, "part": "right_eye", "coordinates": {"x": 44, "y": 33.714285714285715}, "adiacent_parts": ["right_ear"]}, {"confidence": 0.79953, "part": "left_eye", "coordinates": {"x": 50.476190476190474, "y": 35.285714285714285}, "adiacent_parts": []}, {"confidence": 0.55166, "part": "right_ear", "coordinates": {"x": 38.38095238095238, "y": 35.285714285714285}, "adiacent_parts": []}], "bounding_box": {"start": {"x": 38.38095238095238, "y": 33.714285714285715}, "end": {"x": 50.476190476190474, "y": 53.857142857142854}}}, {"face_id": 2, "landmarks": [{"confidence": 0.6995, "part": "nose", "coordinates": {"x": 59.714285714285715, "y": 31.571428571428573}, "adiacent_parts": ["right_eye", "left_eye"]}, {"confidence": 0.29553, "part": "neck", "coordinates": {"x": 64.85714285714286, "y": 51.142857142857146}, "adiacent_parts": ["nose"]}, {"confidence": 0.38189, "part": "right_eye", "coordinates": {"x": 56.95238095238095, "y": 26.571428571428573}, "adiacent_parts": []}, {"confidence": 0.57546, "part": "left_eye", "coordinates": {"x": 64.38095238095238, "y": 29.285714285714285}, "adiacent_parts": ["left_ear"]}, {"confidence": 0.37704, "part": "left_ear", "coordinates": {"x": 70.38095238095238, "y": 33.142857142857146}, "adiacent_parts": []}], "bounding_box": {"start": {"x": 56.95238095238095, "y": 26.571428571428573}, "end": {"x": 70.38095238095238, "y": 51.142857142857146}}}], "faces_count": 2}, "message": null}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"status": {"type": "string"}, "data": {"type": "object", "properties": {"input_source": {"type": "string"}, "faces": {"type": "array", "items": {"type": "object", "properties": {"face_id": {"type": "integer"}, "landmarks": {"type": "array", "items": {"type": "object", "properties": {"confidence": {"type": "number"}, "part": {"type": "string"}, "coordinates": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}, "required": ["x", "y"]}, "adiacent_parts": {"type": "array", "items": {"type": "string"}}}, "required": ["adiacent_parts", "confidence", "coordinates", "part"]}}, "bounding_box": {"type": "object", "properties": {"start": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}, "required": ["x", "y"]}, "end": {"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}, "required": ["x", "y"]}}, "required": ["end", "start"]}}, "required": ["bounding_box", "face_id", "landmarks"]}}, "faces_count": {"type": "integer"}}, "required": ["faces", "faces_count", "input_source"]}, "message": {"type": "null"}}, "required": ["data", "message", "status"]}