import datasets


_DESCRIPTION = """\
Train, validation and test splits for TED talks as in http://phontron.com/data/ted_talks.tar.gz (detokenized)
"""

_CITATION = """\
@inproceedings{Ye2018WordEmbeddings,
  author  = {Ye, Qi and Devendra, Sachan and Matthieu, Felix and Sarguna, Padmanabhan and Graham, Neubig},
  title   = {When and Why are pre-trained word embeddings useful for Neural Machine Translation},
  booktitle = {HLT-NAACL},
  year    = {2018},
  }
"""

_DATA_URL = "data/TED.tar"

_LANGUAGES = ["ar", "az", "be", "bg", "bn", "bs", "cs", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fr-ca", "gl", "he", "hi", "hr", "hu", "hy", "id", "it", "ja", "ka", "kk", "ko", "ku", "lt", "mk", "mn", "mr", "ms", "my", "nb", "nl", "pl", "pt", "pt-br", "ro", "ru", "sk", "sl", "sq", "sr", "sv", "ta", "th", "tr", "uk", "ur", "vi", "zh", "zh-cn", "zh-tw"]


class TedTalksConfig(datasets.BuilderConfig):
    """BuilderConfig for TED talk dataset."""

    def __init__(self, language_pair=(None, None), **kwargs):
        self.language_pair = language_pair
        self.source, self.target = self.language_pair[0], self.language_pair[1]

        name = f"{self.source}_{self.target}"
        description = f"Parallel sentences in `{self.source}` and `{self.target}`."
        super(TedTalksConfig, self).__init__(name=name, description=description, **kwargs)


class TedTalks(datasets.GeneratorBasedBuilder):
    """TED talk data from http://phontron.com/data/ted_talks.tar.gz."""

    unique_pairs = [
        "_".join([l1, l2])
        for l1 in _LANGUAGES
        for l2 in _LANGUAGES
        if l1 != l2
    ]

    BUILDER_CONFIGS = [
        TedTalksConfig(
            language_pair=(pair.split("_")[0], pair.split("_")[1]),
            version=datasets.Version("1.0.0", ""),
        )
        for pair in unique_pairs
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    self.config.source: datasets.features.Value("string"),   
                    self.config.target: datasets.features.Value("string"),
                }
            ),
            homepage="https://github.com/neulab/word-embeddings-for-nmt",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive = dl_manager.download(_DATA_URL)

        def _get_overlap(source_file, target_file):
            for path, f in dl_manager.iter_archive(archive):
                if path == source_file:
                    source_sentences = f.read().decode("utf-8").split("\n")
                elif path == target_file:
                    target_sentences = f.read().decode("utf-8").split("\n")

            return len([
                (src, tgt)
                for src, tgt
                in zip(source_sentences, target_sentences)
                if src != "" and tgt != ""
            ])

        split2tedsplit = {"train": "train", "validation": "dev", "test": "test"}

        overlap = {
            split: _get_overlap(
                f"{split}/ted.{split2tedsplit[split]}.{self.config.source}",
                f"{split}/ted.{split2tedsplit[split]}.{self.config.target}"
            )   for split in ["train", "validation", "test"]
        }

        generators = []
        if overlap["train"] > 0:
            generators.append(
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "source_file": f"train/ted.train.{self.config.source}",
                        "target_file": f"train/ted.train.{self.config.target}",
                        "files": dl_manager.iter_archive(archive),
                    },
                ),
            )
        if overlap["validation"] > 0:
            generators.append(
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "source_file": f"validation/ted.dev.{self.config.source}",
                        "target_file": f"validation/ted.dev.{self.config.target}",
                        "files": dl_manager.iter_archive(archive),
                    },
                ),
            )   
        if overlap["test"] > 0:
            generators.append(
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "source_file": f"test/ted.test.{self.config.source}",
                        "target_file": f"test/ted.test.{self.config.target}",
                        "files": dl_manager.iter_archive(archive),
                    },
                ),
            ) 

        return generators


    def _generate_examples(self, source_file, target_file, files):
        """Returns examples as raw text."""

        source_sentences, target_sentences = None, None
        for path, f in files:
            if path == source_file:
                source_sentences = f.read().decode("utf-8").split("\n")
            elif path == target_file:
                target_sentences = f.read().decode("utf-8").split("\n")

        assert len(target_sentences) == len(source_sentences), (
            f"Sizes do not match: {len(source_sentences)} vs {len(target_sentences)}." 
        )

        # ignore empty
        source_target_pairs = [
            (src, tgt)
            for src, tgt
            in zip(source_sentences, target_sentences)
            if src != "" and tgt != ""
        ]

        if len(source_target_pairs) > 0:
            source_sentences, target_sentences = zip(*source_target_pairs)
            for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
                yield idx, {self.config.source: l1, self.config.target: l2}