import gzip from datasets import ( BuilderConfig, GeneratorBasedBuilder, DownloadManager, StreamingDownloadManager, Version, SplitGenerator, Split, DatasetInfo, Features, Value, ) from typing import Union from pathlib import Path class TatoebaChallengeConfig(BuilderConfig): """Builder config for Tatoeba challenge dataset.""" def __init__(self, name: str, version: str, **kwargs): assert version == "2023-09-26", "Only v2023-09-26 is supported" super().__init__( name=name, version=Version(version.replace("-", ".")), **kwargs ) self.version_str = version self.data_url = ( f"https://object.pouta.csc.fi/Tatoeba-Challenge-v{version}/{name}.tar" ) class TatoebaChallenge(GeneratorBasedBuilder): """Tatoeba challenge dataset.""" BUILDER_CONFIG_CLASS = TatoebaChallengeConfig BUILDER_CONFIGS = [ TatoebaChallengeConfig(name="chv-eng", version="2023-09-26"), TatoebaChallengeConfig(name="chv-rus", version="2023-09-26"), ] def _info(self) -> DatasetInfo: src, trg = self.config.name.split("-") return DatasetInfo( description=""" The Tatoeba Translation Challenge. You can find more about the data here: https://github.com/Helsinki-NLP/Tatoeba-Challenge Here we have only Chuvash-English subset. We do not use official dataset https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt here because chv-eng of the dataset contains only test split. """, features=Features( { "id": Value("string"), src: Value("string"), trg: Value("string"), } ), supervised_keys=None, homepage="https://github.com/Helsinki-NLP/Tatoeba-Challenge", citation=""" @inproceedings{tiedemann-2020-tatoeba, title = "The {T}atoeba {T}ranslation {C}hallenge {--} {R}ealistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.wmt-1.139", pages = "1174--1182" } """, ) def _split_generators( self, dl_manager: Union[DownloadManager, StreamingDownloadManager] ): dl_dir = dl_manager.download_and_extract(self.config.data_url) assert isinstance(dl_dir, str) path_to_folder = ( Path(dl_dir) / "data" / "release" / f"v{self.config.version_str}" / self.config.name ) return [ SplitGenerator( name=Split.TRAIN._name, gen_kwargs={ "langs": path_to_folder / "train.id.gz", "src": path_to_folder / "train.src.gz", "trg": path_to_folder / "train.trg.gz", }, ), SplitGenerator( name=Split.TEST._name, gen_kwargs={ "langs": path_to_folder / "test.id", "src": path_to_folder / "test.src", "trg": path_to_folder / "test.trg", }, ), ] def _generate_examples(self, langs: Path, src: Path, trg: Path): if langs.suffix == ".gz": assert src.suffix == trg.suffix assert trg.suffix == langs.suffix opener = gzip.open else: opener = open with opener(langs, "rb") as langs_src: with opener(src, "rb") as src_src: with opener(trg, "rb") as trg_src: for id_, (langs_line, src_line, trg_line) in enumerate( zip(langs_src, src_src, trg_src) ): langs_row = langs_line.decode("utf8").strip().split("\t") # train contains 3 symbols if len(langs_row) == 3: _, src_lang, trg_lang = langs_row else: src_lang, trg_lang = langs_row yield ( id_, { "id": id_, src_lang: src_line.decode("utf8").strip(), trg_lang: trg_line.decode("utf8").strip(), }, )