id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-27,515 | 2 \cdot a \cdot a \cdot 3 \cdot 2 = a^2 \cdot 12 |
5,624 | dx' = x' d |
-5,618 | \frac{1}{2\cdot (x + 8\cdot \left(-1\right))}\cdot 2 = \dfrac{1}{x\cdot 2 + 16\cdot (-1)}\cdot 2 |
-18,391 | \tfrac{1}{i^2 + 7i}(42 + i^2 + 13 i) = \frac{1}{i*(i + 7)}\left(7 + i\right) \left(i + 6\right) |
31,739 | -\left((-m*2)^{1/2}\right)^2 = 2*m |
169 | E \cdot \Sigma \cdot T = \Sigma \cdot E \cdot T |
-20,118 | \dfrac99 \frac{8 (-1) + x*2}{x + 10 \left(-1\right)} = \dfrac{72 \left(-1\right) + x*18}{x*9 + 90 \left(-1\right)} |
929 | x^2 + b\cdot x rightarrow -\left(\frac{b}{2}\right)^2 + \left(\frac{b}{2} + x\right) \cdot \left(\frac{b}{2} + x\right) |
11,300 | e^C*e^W = e^{W + C} |
3,927 | x A = x x A \implies x \in A |
28,300 | (3 + w)^2 + 14 = w^2 + w \times 6 + 23 |
11,055 | (y^{2g_1})^{g_2} = \left((y^{g_1})^2\right)^{g_2} = (\frac{1}{y^{g_1}})^{g_2} = (y^{g_1})^{g_2 + (-1)} |
11,938 | 4*k + 4 = 4*\left(k + 1\right) |
45,503 | 11\times 59 = 649 |
-23,108 | -\dfrac74 = \dfrac72\cdot (-\frac{1}{2}) |
17,147 | 6 + x^2 - 5\cdot x = (x + 2\cdot (-1))\cdot (x + 3\cdot (-1)) |
2,445 | \Delta_1 \cdot \Delta_2 \cdot \Delta_1 \cdot \Delta_2 = \Delta_2 \cdot \Delta_1 \cdot \Delta_2 \cdot \Delta_1 |
24,763 | -\sin{a} \cdot \sin{b} + \cos{b} \cdot \cos{a} = \cos(a + b) |
34,297 | \sec^2\left(x\right) + (-1) = \tan^2\left(x\right) |
44,965 | 1+6+15 = 22 |
5,319 | 10 = ((-1) + 6)*2 |
21,852 | \alpha\cdot |Z|^2 + \beta\cdot |Z \cdot Z| = \alpha\cdot |Z|^2 + \beta\cdot |Z|^2 = \left(\alpha + \beta\right)\cdot |Z|^2 |
-22,204 | k^2 - 3k + 2 = (\left(-1\right) + k) (2(-1) + k) |
20,019 | \cos{x} = \frac{1}{\sqrt{1 + \tan^2{x}}} \lt \frac{1}{\sqrt{1 + x^2}} |
-27,563 | \frac{dy}{dx} = \dfrac{(-1)\cdot (6\cdot x \cdot x - 5\cdot y)}{(-1)\cdot (5\cdot x + 2\cdot y)} = \frac{6\cdot x^2 - 5\cdot y}{5\cdot x + 2\cdot y} |
-10,456 | 2/2 \cdot (-\frac{1}{5 \cdot q^2} \cdot (q + 7 \cdot (-1))) = -\frac{1}{q \cdot q \cdot 10} \cdot (2 \cdot q + 14 \cdot (-1)) |
-3,699 | \tfrac{1}{20}*18*\frac{i^5}{i} = \tfrac{18*i^5}{20*i} |
35,450 | \int |c|\,d\nu = \int |c|\,d\nu |
11,564 | \cosh(2 \cdot t) = \cosh^2(t) + \sinh^2(t) = 1 + 2 \cdot \sinh^2(t) |
34,862 | \nu^3 = y^3 = z^2 * z = \nu*y*z |
34,776 | (2n-3)!! = \frac{(2n-2)!!}{(2n-2)!!}(2n-3)!! = \frac{(2n-2)!}{(2n-2)!!} = \frac{(2n-2)!}{2^{n-1}(n-1)!} |
10,397 | 2\theta = \frac13\left(2n + 1\right) \pi\Longrightarrow \pi\cdot (n\cdot 2 + 1)/6 = \theta |
-2,429 | 12 \cdot 6^{1 / 2} = (3 + 4 + 5) \cdot 6^{1 / 2} |
37,367 | \cos{2\cdot \xi} = \cos^2{\xi} - \sin^2{\xi} = 2\cdot \cos^2{\xi} + \left(-1\right) |
-613 | 11/2 \pi - 4\pi = 3/2 \pi |
25,649 | z\cdot (-1 + 1) = z - z |
3,648 | 1 + z + za + z^2 + az^2 + a^2 z^2 + \dots = 1 + (1 + a) z + z^2*(a^2 + 1 + a) + \dots |
12,851 | \tfrac{1}{(4^4)^2}4!^2 = 9/1024 \approx 0.008789 |
-11,748 | \left(9/4\right)^2 = \frac{1}{16} \cdot 81 |
21,174 | (x + 2\times Z + 3\times z)^2 = Z\times x\times 4 + x^2 + 4\times Z \times Z + 9\times z^2 + 12\times Z\times z + x\times z\times 6 |
3,500 | \frac 12=\frac 1k\Rightarrow k=2 |
-4,360 | \dfrac{66 \cdot t}{48 \cdot t^4} = \frac{t}{t^4} \cdot 66/48 |
11,955 | \frac12\cdot (a + f) = -\dfrac12\cdot (f - a) + f |
11,453 | (y + 1) \cdot \left(y \cdot y - y + 2\right) = (y + 1) \cdot (y^2 - y + 1) + y + 1 = y \cdot y^2 + 1 + y + 1 = 6 + y |
15,668 | 1/4 \cdot \frac{1/4}{4} \cdot 1/4 \cdot 4/4 = \dfrac{4}{4^5} |
-7,570 | \tfrac{1}{18}(36 - 36 i - 36 i + 36 (-1)) = \frac{1}{18}(0 - 72 i) = -4i |
42,464 | e^{i\times j} = \cos{j} + i\times \sin{j} = \cosh{i} + j\times \sinh{i} |
13,829 | -t^2 + a \times t = a^2/4 - (t - a/2)^2 |
26,625 | \dfrac12 \cdot \sin\left(x \cdot 2\right) = \cos(x) \cdot \sin\left(x\right) |
14,779 | 16 (-1) + y^8 = (4 + y^4) (2 + y^2) (y^2 + 2 (-1)) |
-594 | e^{\frac{23}{12} \cdot i \cdot \pi \cdot 15} = (e^{23 \cdot \pi \cdot i/12})^{15} |
12,432 | f = i v + u\Longrightarrow -v + i u = i f |
15,215 | \cot(x + 2 \cdot \pi) = \cot\left(x\right) |
658 | \frac{c^n - k^n}{c - k} = c^{n + (-1)} + ... + c^2 k^{3(-1) + n} + k^{n + 2(-1)} c + k^{n + (-1)} |
16,481 | 25 + x^2 + x \cdot 2 = \left(x + 1\right)^2 + 24 |
-19,729 | \frac{21}{8}\cdot 1 = 21/8 |
-10,663 | \frac{1}{b^2} \cdot 2 \cdot 12/12 = \frac{24}{12 \cdot b^2} |
17,453 | \dfrac{1}{(3 + 1)^{1/2}\cdot 2} = 1/4 |
-7,541 | \frac{1}{3 + 5 \cdot i} \cdot (-5 \cdot i - 37) \cdot \dfrac{3 - 5 \cdot i}{3 - 5 \cdot i} = \frac{-37 - 5 \cdot i}{i \cdot 5 + 3} |
30,676 | (1 + k)^3 - k \cdot k \cdot k = 3\cdot k^2 + k\cdot 3 + 1 |
29,071 | (x^2 + (-1))*(x^4 + x^2 + 1) = x^6 + (-1) |
209 | \frac{\text{d}}{\text{d}x} (5 + x)^5 = (5 + x)^4 \cdot 5 |
4,787 | |4 + 2 \left(-1\right)| = |1 + 3 (-1)| |
-1,744 | 3/4\cdot \pi + \pi = \frac14\cdot 7\cdot \pi |
27,922 | |f\cdot x| = |f|\cdot |x| |
-27,628 | 13 + 13\cdot (-1) + 9\cdot \left(-1\right) + 2 = 0 + 9\cdot (-1) + 2 = -9 + 2 = -7 |
24,502 | -x^2 + m^2 = \left(x + m\right) \cdot (m - x) |
1,334 | {x + m + (-1) \choose 2\cdot m + \left(-1\right)} = {x + m + (-1) \choose x + m + (-1) - 2\cdot m + (-1)} = {x + m + (-1) \choose x - m} |
8,889 | \sin\left(x\right) = \sin(y) = -\sin\left(x + y\right) |
-10,364 | \frac{1}{10 \cdot y} \cdot 4 \cdot \frac{1}{2} \cdot 2 = \frac{1}{y \cdot 20} \cdot 8 |
2,621 | (5 \cdot \left(-1\right) + 10) \cdot (2^2 \cdot 5 + 2 \cdot 5 + 5) \cdot (10 + 5 \cdot (-1)) = -5 \cdot 5 \cdot 5 + 10^3 |
-6,625 | \frac{5}{3*(p + 8)} = \frac{5}{3*p + 24} |
10,632 | (3^y + (-1))/2 = 1 + 3 + 3^2 + \dots + 3^{y + (-1)} |
12,077 | 4*(-1) + 13 + 3*(-1) = 6 |
-19,013 | \tfrac12 = \dfrac{A_s}{16*\pi}*16*\pi = A_s |
25,990 | (10^x + \left(-1\right)) (10^x + \left(-1\right)) = 10^{2 x} - 2*10^x + 1 \lt 10^{2 x} |
-15,924 | -\frac{44}{10} = \frac{10}{10} - 6\cdot \frac{9}{10} |
172 | (2*(-1) + x)*(x + 1) = x^2 - x + 2*(-1) |
20,146 | \cos 2A = 2 \cos^2 A - 1 = 1 - 2\sin^2 A |
27,089 | f\cdot d + d\cdot h = d\cdot (f + h) |
12,623 | \left(-1\right)\cdot (-1)\cdot (-1)\cdot 2 = -2 |
-7,930 | (72 + 8 \cdot i - 90 \cdot i + 10)/41 = (82 - 82 \cdot i)/41 = 2 - 2 \cdot i |
5,724 | 9 \cdot t \cdot t = x^2 \cdot 3 \Rightarrow 3 \cdot t^2 = x^2 |
-4,629 | \frac{-x \cdot 2 + 7}{x^2 - 7 \cdot x + 12} = -\frac{1}{x + 4 \cdot \left(-1\right)} - \dfrac{1}{x + 3 \cdot (-1)} |
-20,058 | \dfrac{1}{k + 9}(6(-1) - k \cdot 6) \cdot 9/9 = \frac{54 (-1) - 54 k}{81 + k \cdot 9} |
-23,082 | -\frac32 \cdot (-2) = 3 |
32,102 | \frac{8}{2 \cdot h^2} \cdot h \cdot h \cdot h = 4 \cdot h |
17,477 | 2x + 8\left(-1\right) = (x + 4\left(-1\right))*2 |
11,837 | \cos\left(E\right) \cdot \sin(Z) + \sin(E) \cdot \cos(Z) = \sin(Z + E) |
20,735 | a^3-b^3 = (a-b)(a^2 + ab + b^2) |
20,651 | \left\lfloor{z^2}\right\rfloor + (-1) = \left\lfloor{z^2 + (-1)}\right\rfloor |
-7,447 | 1/12 = 3/8*\frac{1}{9}*4*\frac{5}{10} |
-23,448 | 3/5 \cdot 5/9 = \dfrac{1}{3} |
12,853 | 3^6*2^6*4^3 = 2^1*3^2*4^3*2^5*3^4 |
10,606 | (10+10)\times0=0 |
-24,669 | 8 + i \cdot 52 = 9 + i \cdot 52 + (-1) |
46,354 | \cos{N} = \cos{-N} |
19,096 | \cos(2 \cdot t) = 1 - 2 \cdot \sin^2(t) = 2 \cdot \cos^2\left(t\right) + (-1) |
-29,144 | 4 \cdot 4 + 1\cdot 2 = 18 |
-12,113 | 14/15 = \tfrac{1}{6 \cdot \pi} \cdot t \cdot 6 \cdot \pi = t |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.