id
int64
-30,985
55.9k
text
stringlengths
5
437k
6,401
(q - p)^2 = (p - q) * (p - q)
27,273
\frac12\cdot (1 + 5^{1/2}) = 5^{1/2}/2 + 1/2
12,339
n = \left\{1, ..., n\right\}
19,120
m*2 + 3(-1) = m + \left(-1\right) + m + 2(-1)
26,694
\frac{1}{-10}\cdot 48 = -24/5
8,589
n^5 + (-1) = (n + (-1)) \cdot \left(n^4 + n^3 + n^2 + n + 1\right)
17,594
\frac{1}{12} = 7/z rightarrow 84 = z
2,765
kv + wk = k \cdot (w + v)
40,916
121^2 - 17*54 54 = 14641 + 49572 (-1) = -34931
-20,889
\tfrac{1}{-2 \cdot k + 20} \cdot (-k \cdot 10 + 4) = \frac{1}{-k + 10} \cdot (-5 \cdot k + 2) \cdot \frac12 \cdot 2
109
\frac12\left(-\cos(2x) + 1\right) = \sin^2(x)
4,902
\varepsilon/F = X/H \implies \frac{1}{H}\cdot X = \varepsilon/F = \frac{X - \varepsilon}{H - F}
-15,058
\frac{1}{\frac{1}{y^4 x^6} y^5} = \frac{(\frac1y)^5}{\frac{1}{y^4 x^6}}
-22,719
\frac{5 \cdot 8}{7 \cdot 8} = 40/56
16,260
\left(z - y_2\right)\cdot (z - y_1) = y_2\cdot y_1 + z \cdot z - (y_1 + y_2)\cdot z
-10,643
3/(t*12) = \frac{1}{4*t}*1
-23,921
\dfrac{15}{1 + 4} = \frac15\cdot 15 = \frac{15}{5} = 3
711
\sqrt{\frac{1 + t}{1 - t}} = \frac{1}{\sqrt{1 - t^2}} \cdot (1 + t) = (1 + t) \cdot \mathbb{E}[t]
-2,585
((-1) + 4 + 5)\cdot \sqrt{13} = 8\cdot \sqrt{13}
14,759
(-y + x)\cdot \left(y + x\right) = x \cdot x - y^2
9,718
0 = u \cdot (-\lambda \cdot I + B \cdot A)\Longrightarrow u \cdot B \cdot (B \cdot A - \lambda \cdot I) = 0
-10,488
\dfrac{1}{x}(4x + 1)*3/3 = (x*12 + 3)/(3x)
10,034
(b_z + \left(-1\right))*(b_z + 1) = b_z^2 + \left(-1\right)
-536
\pi\cdot 3/2 = \pi\cdot \frac{1}{2}\cdot 35 - \pi\cdot 16
24,092
N^{x_0} = Nk \Rightarrow N^{x_0 + (-1)} = k
5,836
\frac{4}{51}\cdot \frac{48}{52} = \dfrac{16}{221}
-22,178
80\cdot (-1) + z^2 - 2\cdot z = (10\cdot \left(-1\right) + z)\cdot (8 + z)
13,823
b^4 - a^4 = (b^2 - a \cdot a)\cdot (b^2 + a^2) = (b - a)\cdot (b + a)\cdot (b \cdot b + a^2)
-797
491/10000 = 1/10000 + 0 + \frac{0}{10} + \frac{4}{100} + 9/1000
21,645
\cos\left(x + z\right) = -\sin(x)\cdot \sin\left(z\right) + \cos\left(z\right)\cdot \cos\left(x\right)
21,777
y\cdot 4\cdot \left(1 + l\right) = (l\cdot 4 + 4)\cdot y
-7,164
\frac{1}{24}\cdot 7 = \dfrac19\cdot 6\cdot \dfrac{7}{10}\cdot 5/8
14,817
\left(\cos{z} = i\cdot \sin{z} \Rightarrow 0 = -i\cdot \sin{z} + \cos{z}\right) \Rightarrow e^{-z\cdot i} = 0
-7,293
3/9\cdot \frac{2}{10} = \frac{1}{15}
7,939
20 \pi/8 = \frac{\pi\cdot 5}{2}
-8,978
104.7\% = \frac{1}{100} \cdot 104.7
-20,878
\dfrac{-10y - 3}{y - 1} \times \dfrac{7}{7} = \dfrac{-70y - 21}{7y - 7}
-20,466
-9/4*\frac{1}{t + 10}*\left(t + 10\right) = \dfrac{1}{t*4 + 40}*(-t*9 + 90*(-1))
11,995
4 + x^2 = 4 \cdot \left(1 + x^2/4\right)
240
\frac14 = -\frac23 + 11/12
-11,637
16*i - 16 + 3 = i*16 - 13
1,061
0 = b + 2 \cdot (-1) \Rightarrow 2 = b
5,848
1/(g\cdot f) = 1/\left(f\cdot g\right)
-5,827
\dfrac{5}{4 \cdot (p + 5)} = \frac{1}{4 \cdot p + 20} \cdot 5
18,149
1 = \frac{z}{z} rightarrow \frac1z = 1/z
18,959
\cos^2(x) - \sin^2\left(x\right) = 2 \cdot \cos^2(x) + \left(-1\right) = 1 - 2 \cdot \sin^2(x)
38,378
0^{2^{k + 1 + 1}} = 0^{2^k*2*2}
-17,470
19 = 32\cdot \left(-1\right) + 51
18,586
\frac{15}{45} + \frac{24}{45}*\frac{1}{2} = \frac{1}{3} + \frac{4}{15} = \frac15 3
35,108
(n + 1)/n! = 1/n! + \frac{1}{\left(n + (-1)\right)!}
-7,426
\frac{9}{91} = \dfrac{3}{13}*6/14
17,790
\frac{x^2 + y^2}{x \cdot y} = \frac{1}{x \cdot y} \cdot (\left(x + y\right)^2 - 2 \cdot x \cdot y) = \frac{(x + y)^2}{x \cdot y} + 2 \cdot (-1)
-4,455
-\frac{1}{(-1) + x} - \frac{1}{4 \cdot (-1) + x} \cdot 4 = \dfrac{1}{x \cdot x - 5 \cdot x + 4} \cdot \left(-5 \cdot x + 8\right)
16,393
\frac{y}{y + h} = 1 - \frac{h}{y + h}
-25,312
\dfrac{d}{dx}\left(\dfrac1x\cos(x)\right)=\dfrac{-\cos(x)-x\sin(x)}{x^2}
10,305
\left(b + a = b*a \Rightarrow a*b - a - b = 0\right) \Rightarrow 1 = (a + (-1))*((-1) + b)
21,168
3/8 = 3/4\cdot \dfrac14\cdot 2
15,310
A_1 B_0 + B_1 A_0 = -A_1 B_1 + (A_0 + A_1) (B_1 + B_0) - A_0 B_0
-9,177
x \cdot 54 + 18 \cdot (-1) = x \cdot 2 \cdot 3 \cdot 3 \cdot 3 - 2 \cdot 3 \cdot 3
6,448
3^x \cdot 2 + 3 \cdot 3^x \cdot c_{k+1} = c_{k+1} \cdot 3^{1 + x} + 2 \cdot 3^x
23,421
\frac12 = \frac{1}{4}*2
37,475
3^{11} = 3^2 \cdot 3\cdot 3^8 = 10\cdot (-1) = 7
28,603
(x + q)*(-q + x) = -q^2 + x^2
3,172
x*261 + 1073 = 29*9 x + 1073
33,915
\frac{1 + n}{\sqrt{n + 1}} = \sqrt{n + 1}
14,894
\epsilon + \epsilon\cdot (1 + \epsilon) = \epsilon^2 + \epsilon\cdot 2
-30,292
\frac{1}{2}\cdot (-1 + 7) = \tfrac62 = 3
7,587
A \setminus G = A - A \cap G = A \cup G - G
-486
\left(e^{\pi i*11/6}\right)^{19} = e^{\frac16 11 i \pi*19}
40,799
\binom{9}{6} + 7\cdot (-1) = 77
7,387
\tan^{-1}{w} = G + x \implies \tan(G + x) = w
43,488
V\cdot 2 = V + V
-2,260
\dfrac{1}{12} = 2/12 - \dfrac{1}{12}
13,377
\dfrac{1}{(f^2 + y^2)^2}\cdot y\cdot y = \dfrac{1}{(y^2 + f^2)^2}\cdot y^2
27,863
7 \cdot i - 1 = \frac14 \cdot (-7 + i \cdot 24 + 3 + i \cdot 4)
12,409
{52 \choose 13} = \frac{1}{13}52 {51 \choose 12} = 4{51 \choose 12}
36,265
35 - x^3 = t^3 \implies x = (-t \cdot t \cdot t + 35)^{1/3}
-24,111
2 + 2\cdot \frac{24}{6} = 2 + 2\cdot 4 = 2 + 2\cdot 4 = 2 + 8 = 10
30,036
\frac{1}{b^2} \cdot a \cdot a = p \Rightarrow a^2 = b \cdot b \cdot p
16,246
y + 8*(-1) = -4*(x + 1) = -4*x + 4*(-1) \Rightarrow 0 = y + x*4 + 4*(-1)
35,776
\frac13\cdot 192 = 64
30,964
\cos{b} \cos{f} + \sin{f} \sin{b} = \cos\left(f - b\right)
-20,462
\frac{d + 9}{2 - d\cdot 2}\cdot \dfrac{7}{7} = \frac{63 + d\cdot 7}{14 - 14 d}
32,500
\int \tan{x}\,dx = \int \frac{\sin{x}}{\cos{x}}\,dx
14,644
\tfrac{m^2}{m + 1} > \frac{m^2 + \left(-1\right)}{m + 1} = \frac{1}{m + 1}\cdot (m + 1)\cdot (m + (-1)) = m + (-1)
20,841
x - \dfrac{1}{2} + 5/2 = 0 \Rightarrow x = -2
27,985
|x + (-1)| = |1 - x| \geq |1| - |x| = 1 - |x| \Rightarrow \dfrac{3}{4} \leq |x|
14,629
x/y = \frac{2*x}{2*y}
24,974
((-1) + B) \cdot (B + 1) = (-1) + B^2
35,151
A^n\cdot A = A^{1 + n}
29,789
0.99 = -1/100 + 1
23,019
(-1) + \tfrac{1}{g}\cdot (d + f + g) = (f + d)/g
-30,903
50 = 10 + 20\cdot 2
2,100
1 + z + z \cdot z + ... = \dfrac{1}{1 - z}
-20,976
-3/2\cdot (x\cdot (-4))/((-4)\cdot x) = x\cdot 12/\left(x\cdot (-8)\right)
-12,901
\dfrac{15}{25} = \frac35
27,611
(y^2 + (-1)) \cdot (y^2 + 1) = (-1) + y^4
5,056
g^2 + 2 \cdot g \cdot a + a^2 = (g + a)^2
18,154
(N + 2 \cdot (-1)) \cdot (N + 2 \cdot (-1)) + (\dfrac{1}{2} \cdot (3 + N)) \cdot (\dfrac{1}{2} \cdot (3 + N)) = N \cdot N + ((5 \cdot (-1) + N)/2)^2
15,548
43361 = (13*10 + 1) \left(3*11*10 + 1\right) = 131*331