id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
22,156 | \frac{3 - 1 + 2 + 4}{1\cdot 2 - 3\cdot 4} = \tfrac{4}{-10} \neq 0 |
1,934 | 140 + 85 (-1) = 55 |
1,158 | \tfrac{1}{0} 0 = 0 |
9,514 | (z - N)\cdot (N + z) = z^2 - N^2 |
-22,350 | 18 + x^2 - x\cdot 11 = \left(x + 9\cdot (-1)\right)\cdot \left(x + 2\cdot (-1)\right) |
-19,465 | 5*1/4/(\frac14*3) = 4/3*\dfrac145 |
20,711 | \sin(\theta) \times \cos(\theta) \times 2 = \sin(\theta \times 2) |
-22,001 | 7/4 - 7/5 = \frac{7 \times 5}{4 \times 5} - \frac{7 \times 4}{5 \times 4} = 35/20 - 28/20 = \frac{1}{20} \times (35 + 28 \times (-1)) = \frac{7}{20} |
18,958 | p + d = 2\left(d - ldl\right) \Rightarrow p = -2ld l + d |
1,638 | (y^9\cdot y^3)^2 = y^{24} |
35,434 | 51\times 52/2 = 1326 |
23,257 | c^5 + b^5 = (b + c) (b^4 + c^4 - c^3 b + b b c^2 - b b b c) |
23,526 | 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 2^0 \cdot 0 = 10 |
-29,594 | \frac{\mathrm{d}}{\mathrm{d}x} (3x^4) = 3\frac{\mathrm{d}}{\mathrm{d}x} x^4 = 3\cdot 4x^3 = 12 x^3 |
22,909 | \frac{1}{2} = 3/4\cdot 2/3 |
17,237 | k/j = \frac{j}{i} = \frac{k - j}{j - i} |
22,828 | \frac34 = \dfrac{2 + 1}{2 + 2} |
-11,518 | -20 + 3\times \left(-1\right) + i\times 11 = 11\times i - 23 |
-21,066 | \frac13 = \dfrac16*2 |
-10,460 | \frac{1}{50 \cdot k + 50} \cdot (25 \cdot k + 35 \cdot (-1)) = \dfrac{1}{10 \cdot k + 10} \cdot (5 \cdot k + 7 \cdot (-1)) \cdot \dfrac{5}{5} |
47,023 | \frac{1 + i + 1}{2 + 2\cdot i} = (1 - \frac{1}{(i + 1) \cdot (i + 1)})\cdot \left(i + 1\right)/(2\cdot i) |
-5,082 | 10 \cdot 10^2 \cdot 18.0 = 18 \cdot 10^{2 + 1} |
8,227 | 6/49 + 1/7 = \frac{1}{49} \cdot 13 |
2,217 | 5!*4/2! = 4^5 - \binom{4}{1}*3^5 + \binom{4}{2}*2^5 - \binom{4}{3}*1^5 |
-1,424 | \left(1/3\cdot (-4)\right)/(\tfrac{1}{8}\cdot (-7)) = -4/3\cdot (-\frac17\cdot 8) |
4,044 | \frac{\partial}{\partial z} \tan^l{z} = \tan^{l + (-1)}{z} l |
35,579 | 25^{l + 2} - 5^{2\times l + 2} = 5^{2\times l + 2}\times ((-1) + 25) |
13,609 | 16 \cdot 14 \cdot 13 \cdot 12 \cdot 15 = \binom{16}{5} \cdot 3 \cdot 2 \cdot 4 \cdot 5 |
661 | \mathbb{Var}[R] = \mathbb{E}[(R - \mathbb{E}[R])^2] = \mathbb{E}[R^2] - \mathbb{E}[R] \cdot \mathbb{E}[R] |
8,173 | \sqrt{6} \sqrt{30} = \sqrt{5} \cdot 6 |
54,137 | 219 = 3*73 |
30,452 | 5\cdot e = 5\cdot e + 0\cdot (-1) = 5\cdot e - 5\cdot 0 |
-2,457 | \left(5 + 3(-1)\right) \sqrt{5} = 2\sqrt{5} |
418 | 0.9999998 = \dfrac{1}{10^7}\cdot 9.999998 = \frac{1}{5\cdot 10^6}\cdot 4999999 |
41,240 | 263^{16} = \left(263^8\right)^2 = 22890010290541014721 * 22890010290541014721 |
11,438 | 0 = \dfrac{2\cdot 0^2}{0 + 3} |
12,114 | y'^2 - zy' + x = 0\Longrightarrow \dfrac{1}{2}(z \pm (z \cdot z - x \cdot 4)^{\frac{1}{2}}) = y' |
-19,318 | 3/4\cdot \dfrac{3}{7} = 3\cdot 3/\left(4\cdot 7\right) = 9/28 |
3,439 | (x - y) \cdot z = z \cdot x - y \cdot z |
-19,413 | \dfrac25\cdot \dfrac58 = 2\cdot 5/(5\cdot 8) = 10/40 |
20,497 | u*(-x) = -ux |
-20,678 | \frac{16}{32 - 16 t} = 8/8*\frac{1}{4 - 2t}2 |
12,369 | -x^2\times a = -a\times x^2 |
8,251 | \left(2/5 = \frac{3 z - y}{-y + 7 z} \Rightarrow -2 y + z \cdot 14 = z \cdot 15 - y \cdot 5\right) \Rightarrow z/3 = y |
29,140 | D\cdot t = D\cdot t |
12,911 | z^4 + (-1) = \left(1 + z^2\right) \cdot (z + (-1)) \cdot (z + 1) |
31,778 | 17! = 17*16*15*\dotsm*2 |
1,167 | (x - q)/x*\frac{q}{(-1) + x} = \dfrac{1}{-x + x^2}*(-q^2 + q*x) |
-15,916 | -\frac{58}{10} = 5/10 - \frac{9}{10} \cdot 7 |
-30,638 | 14 (-1) - z*6 = -2*\left(7 + 3z\right) |
5,796 | \left|{A}\right| = \left|{G}\right| \left|{A}\right| = \left|{GA}\right| |
19,366 | |z| \gt 1\Longrightarrow 1/|z| < 1 |
-4,352 | \dfrac{44\cdot m^5}{22\cdot m^2} = 44/22\cdot \frac{m^5}{m^2} |
35,917 | \sqrt{d} \cdot \sqrt{d} = d |
4,255 | x^9 + \left(-1\right) = (x^3 + \left(-1\right))\cdot \left(x^6 + x \cdot x \cdot x + 1\right) = (x + (-1))\cdot (x^2 + x + 1)\cdot (x^6 + x^3 + 1) |
23,656 | 7^2 \times 3^5 \times 43 = 1 + 80^2 \times 80 |
13,862 | (1 + x)^{k + 1} = (1 + x)\cdot (1 + x)^k \geq (1 + x)\cdot (1 + k\cdot x) = 1 + (k + 1)\cdot x + k\cdot x^2 \geq 1 + (k + 1)\cdot x |
22,966 | (1 + x \cdot x - x)\cdot (x^2 + x + 1) = 1 + x^4 + x^2 |
-3,867 | t^4*90/(10*t) = 90/10*t^4/t |
38,946 | \dotsm*8084427865522000000000000000000001 = 3^{10^{20}} |
-5,488 | \frac{p}{(p + (-1)) (p + 4(-1))}2 = \frac{2p}{4 + p^2 - p \cdot 5} |
15,472 | \|G\|_2^2 = \|G^H*G\|_2 \leq \|G^H\|_2*\|G\|_2 |
35,337 | |F_2 \cdot F_1| = |F_2| \cdot |F_1| |
20,936 | \cos{ny} = \cos{-yn} |
-1,325 | (\left(-5\right)*\tfrac{1}{7})/\left((-9)*1/2\right) = -5/7*(-\dfrac29) |
14,184 | 2^n\times n! = 2\times 4\times 6\times \dotsm\times n\times 2 |
5,770 | m*k = --m*k = --m*k = --m*k = (-1)*\left(-m\right)*k = m*k |
9,346 | \mathbb{Var}(X - Y) = \mathbb{Var}(X + Y) |
-2,500 | \sqrt{2}\cdot (2\cdot (-1) + 4 + 5) = \sqrt{2}\cdot 7 |
15,442 | (B + D) \cdot X = D \cdot X + B \cdot X |
-30,561 | \dfrac{1}{48}\cdot 96 = 48/24 = \frac{1}{12}\cdot 24 = 2 |
20,249 | 10 \cdot \dfrac{1}{123456} \cdot 654321 = 6 \cdot 9 + (-1) + \frac{42}{123456} \cdot 1 \approx 53 |
2,317 | \left(x \lt 3 \Rightarrow 9 - 2 \cdot x \leq x\right) \Rightarrow x \geq 3 |
10,565 | (1 + x \cdot x)\cdot (1 + x)\cdot \left(x + (-1)\right) = x^4 + \left(-1\right) |
10,819 | \sin{H*3} = \sin{3*H} |
3,160 | 2 + 7 + 25/2 + 4 + 8 = \frac{1}{2}\cdot 67 |
12,066 | -k*\left(-1\right) + m = m + k |
16,667 | {13 \choose 1} \cdot {12 \choose 1} = {13 \choose 2} \cdot 2 |
5,031 | {i + (-1) \choose 2} = (i + (-1))\cdot (2\cdot (-1) + i)/2 |
16,238 | 6132 = {4 \choose 2} \cdot (2 \cdot \left(-1\right) + 2^{10}) |
12,449 | 3165 = (3\cdot 2^{10} + 93) |
-1,570 | \dfrac47 = 4/7 |
20,008 | \frac{1}{(-q + 1)^2}(nq^{n + 1} + 1 - (1 + n) q^n) = 1 + 2q + 3q^2 + \dotsm + q^{n + (-1)} n |
36,898 | (c \cdot c + x \cdot x + xc) (x - c) = x^3 - c^3 |
41,848 | 672 = -2\cdot 4! + 6! |
-20,995 | \dfrac{1}{8} \times \dfrac{6t + 4}{6t + 4} = \dfrac{6t + 4}{48t + 32} |
5,529 | C^3 B^3 = B^3 C^3 |
7,177 | 5x = 2x + 3x |
-27,500 | 2 \cdot 7 \cdot h \cdot h \cdot h = 14 \cdot h^3 |
-9,780 | 24\% = 24/100 = 0.24 |
28,085 | F_l + F_n = F_l + F_n |
2,167 | (1 + r)^2 - r^2 = 2\cdot r + 1 |
-16,309 | 729^{\frac{1}{3}} = 729^{\frac13} = 9 |
32,259 | a^m = a\cdot a^{m + (-1)} = a^{m + (-1)}\cdot a |
3,382 | 4 + 3^{1/2}*2 = (1 + 3^{1/2})^2 |
-11,634 | -8 \times i + 4 = 4 + 0 \times (-1) - i \times 8 |
606 | \tfrac{1}{1 + 2\cdot g^2\cdot a} = 1 - \frac{2\cdot g^2\cdot a}{1 + 2\cdot g^2\cdot a} \geq 1 - \dfrac{a\cdot g}{\sqrt{2\cdot a}}\cdot 1 |
3,558 | \frac{y^2}{y^2} = \frac{y^2}{y^2} |
21,426 | 95/100 = 19/20 |
7,273 | \dfrac{\pi}{4 \cdot 5^{1/2}} = \frac{5^{1/2} \cdot \pi \cdot 2}{4 \cdot 10} \cdot 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.