id
int64
-30,985
55.9k
text
stringlengths
5
437k
25,231
\lim_{\alpha \to 0} \frac{1}{\alpha^{1/3}} \cdot 2^{2/3} = \lim_{\alpha \to 0} \frac{2^{\frac{2}{3}}}{\alpha^{4/3}} \cdot \alpha
-10,528
\dfrac{36}{4*k + 12*(-1)} = \dfrac{9}{k + 3*(-1)}*4/4
-5,856
\frac{4}{x^2 + x \times 5 + 4} = \frac{4}{(1 + x) \times \left(x + 4\right)}
2,536
\overline{C \cup X} = \overline{C} \cup \overline{X} = C \cup X
21,843
\dfrac{1}{2} + \frac13 + 1/6 = 1
-20,792
\frac{k\cdot (-5)}{-k\cdot 6 + 2}\cdot 8/8 = \dfrac{(-1)\cdot 40\cdot k}{16 - 48\cdot k}
12,034
\cos(z) = \tfrac{-\tan^2\left(z/2\right) + 1}{1 + \tan^2(\frac{z}{2})}
39,355
b\times C = b\times C
-7,626
\dfrac{-1+13i}{2-i} = \dfrac{-1+13i}{2-i} \cdot \dfrac{{2+i}}{{2+i}}
40,965
375 = 3\cdot 5 \cdot 5 \cdot 5
16,917
l*p = l*p
31,288
(2^4)^{2^{2\cdot (-1) + t}} = 2^{2^t}
20,050
\cos\left(3 \cdot \left(\theta + \frac{\pi}{3}\right)\right) = \cos\left(2 \cdot \pi + 3 \cdot \theta\right) = \cos(3 \cdot \theta)
28,181
20 + \dfrac{52}{6} = \frac16\cdot 172
27,802
\omega^n + \overline{\omega}^n = \omega^n + \overline{\omega^n} = 2 \cdot \operatorname{re}{(\omega^n)}
-26,510
128 - 32*z + 2*z * z = 2*(64 - 16*z + z^2) = 2*(8 - z)^2
9,776
(x + y)\cdot (x + n\cdot y) = x^2 + n\cdot x\cdot y + x\cdot y + n\cdot y^2 \geq x \cdot x + (n + 1)\cdot x\cdot y
28,803
-s\cdot 41 + e\cdot 24 = -s + (-s\cdot 10 + 6\cdot e)\cdot 4
19,330
\frac{z \cdot z \cdot 4 - z \cdot 5}{2 + 2 \cdot z^2 - 5 \cdot z} = 2 + \frac{5 \cdot z + 4 \cdot (-1)}{2 + z \cdot z \cdot 2 - z \cdot 5}
2,501
\frac{dy}{dz} = \frac{2 \cdot y + 2 \cdot z}{2 \cdot y - 2 \cdot z} = \dfrac{y + z}{y - z}
-13,218
\dfrac{1}{2/5 \cdot (-1/3)} \cdot 3 / 5 = \frac{3 \cdot 1/5}{2 \cdot (-1) \cdot \dfrac{1}{5 \cdot 3}} = \dfrac{3 \cdot \frac{1}{5}}{(-2) \cdot 1/15} = 3/5 \cdot (-15/2) = \dfrac{3 \cdot (-15)}{5 \cdot 2} = -\frac{45}{10}
-11,639
2 + 5 + 9i = 7 + i\cdot 9
-22,993
21/27 = \dfrac{7}{9\cdot 3}\cdot 3
11,876
\dfrac{\left(-1\right)*3 \pi}{4} = -2\pi + \dfrac{5\pi}{4}
12,915
\frac{\sin(2*m)}{\sin(m)*2} = \cos(m)
16,341
\frac{1}{\cos(y) + 1} = \frac{\text{d}}{\text{d}y} \left(\dfrac{\sin(y)}{1 + \cos(y)}\right)
1,770
x^2 + (z + \left(-1\right))\cdot \left(1 + z\right) = x^2 + z^2 + (-1)
11,711
E\left[-C\right] = -E\left[C\right]
-6,261
\frac{r}{r^2 + r \cdot 3 + 70 \cdot (-1)} = \frac{r}{(r + 10) \cdot (7 \cdot (-1) + r)}
48,119
7 \times 43 = 301
38,267
\frac{1}{(3 + 2 \times (-1))!} \times 3! = 6
19,551
1 = -k*2 + n \Rightarrow k = (n + \left(-1\right))/2
15,950
z_1^4 + z_2^4 - 9\cdot z_1^2\cdot z_2^2 - 2\cdot z_1^2\cdot z_2^2 = z_1^4 + z_2^4 - 11\cdot z_1 \cdot z_1\cdot z_2^2
3,929
2 + 6*n = 2 + 3*n*2
3,272
\dfrac{z^2}{z^4} = \dfrac{1}{z^2}
-18,596
\dfrac{1}{7} \cdot 3 = \dfrac37
31,166
0 \lt -(k \cdot k - k + 1) \cdot 64 + 64 \cdot k^2 \Rightarrow 1 \lt k
-20,460
\frac{2 - f*2}{2 - f*2}*\left(-\frac97\right) = \frac{18*f + 18*\left(-1\right)}{14 - 14*f}
-11,556
3 + 0\cdot (-1) + 2\cdot i = i\cdot 2 + 3
39,820
\sqrt{n * n - n + 1} - cn = \frac{(\sqrt{n * n - n + 1} - cn) (\sqrt{n^2 - n + 1} + cn)}{\sqrt{n * n - n + 1} + cn} = \frac{n * n - n + 1 - c^2 n^2}{\sqrt{n * n - n + 1} + cn}
15,459
\sin(y + \pi) = \sin\left(-y\right)
28,979
(-b + x) (x + b) = x x - b^2
-20,816
\tfrac{1}{8 \cdot (-1) + q} \cdot (8 \cdot (-1) + q) \cdot \left(-5/7\right) = \frac{-q \cdot 5 + 40}{56 \cdot (-1) + q \cdot 7}
23,721
1 + p^2 \cdot 64 + p \cdot 16 = (p + 1/8)^2 \cdot 64
-19,859
160\% = \dfrac{160}{100} = 1.6
-18,264
\frac{1}{k^2 + 6k}(54 (-1) + k^2 - 3k) = \frac{1}{(6 + k) k}(k + 6) (k + 9\left(-1\right))
16,538
\frac{1}{2} \times Y \times x^p \times x = x^p \times Y \times x/2
35,712
-\frac{1}{10} + 1/30 + 1/15 = 0
17,214
\frac{4^2}{12} = \dfrac{16}{12} = 4/3
-20,904
\frac{x + 10\cdot \left(-1\right)}{1 - x\cdot 7}\cdot 9/9 = \frac{1}{9 - x\cdot 63}\cdot (90\cdot (-1) + x\cdot 9)
20,157
1 + 2(-1) + 4 + 8(-1) + 16 ... = 1/3
5,833
2\cdot (1 + 1/4) = \dfrac{5}{2}
-26,386
\dfrac{z^n}{z^k} = z^{-k + n}
-29,124
\left(-1\right) (-2) + 3 = 5
13,467
2\cdot x \cdot x + 6\cdot x + 35 = 2\cdot (x^2 + 3\cdot x) + 35 = 2\cdot (x + \frac{1}{2}\cdot 3) \cdot (x + \frac{1}{2}\cdot 3) + \frac{61}{2}
-18,707
\left(-1\right)\cdot 0.0401 + 0.9332 = 0.8931
28,540
{n + (-1) \choose n + (-1)} = {\left(-1\right) + n + (-1) + 1 \choose (-1) + n}
15,108
\sin(-\tfrac{\pi}{2}) = -1
37,106
11!*2 = 10!*11*2
17,497
1/2 = 1/100 + 49/99\cdot \frac{1}{100}\cdot 99
24,325
\frac{1}{2^{10}}*144 = \tfrac{1}{2^{10}}*(6 + 1 + 10 + 36 + 56 + 35)
28,723
a^2 - x^2 = (a + x)\cdot (a - x)
7,164
1 = \frac{2}{-\frac{1}{3 - \frac{2}{(-1) + 3}}\cdot 2 + 3}
10,015
r = \frac{r}{2} + \dfrac14 \cdot (1 - r) \Rightarrow \dfrac13 = r
11,377
21/8 = 9/8 + 1/2 + 4/4
47,354
D^c = D^c
-20,353
-\dfrac{27}{-36} = 3/4 (-\dfrac{9}{-9})
15,281
\frac{y}{N} + z = (y + N*z)/N
22,682
d + \xi + f = f + d + \xi
16,558
x = \frac{d_1}{d_1 + d_2} \Rightarrow \frac{d_2}{d_1 + d_2} = -x + 1
22,387
{6 \choose 1} {5 \choose 1} {9 \choose 3} = 2520
-10,190
25\% = \tfrac{25}{100} = 0.25
2,018
3 = \binom{\left(-1\right) + 2 + 2}{2 + \left(-1\right)}
-1,129
-\dfrac12\cdot 8/1 = (\frac{1}{2}\cdot (-1))/(1/8)
37,809
2^n\cdot 2 = 2^{n + 1}
20,314
44 \times x^5 = x \times 2 \times x^4 \times 9 + 6 \times x^5 + 5 \times x \times x \times x \times x^2 \times 4
-1,820
\dfrac{1}{12} \cdot 23 \cdot π + π/4 = \frac16 \cdot 13 \cdot π
8,351
\left(f + h_2\right)/(h_1) = \frac{h_2}{h_1} + \frac{f}{h_1}
3,019
\frac{n^2 + 2\cdot n}{(n + 1)^2} = \frac{n}{(1 + n)^2}\cdot (n + 2)
34,571
A*x = x*A
6,569
-x^2 + y^2 = (-x + y) \cdot \left(y + x\right)
21,111
2^{\left(-1\right) + n} \cdot 2^{\left(-1\right) + n}\cdot 2^{-n} = 2^{n + 2\left(-1\right)}
4,990
(n - k)*(n - k + (-1))! = \left(n - k\right)!
14,405
\frac13 \cdot (-y + x) = 1 \Rightarrow 3 = x - y
16,263
1 = \frac1a + \frac{1}{a + b} + \dfrac{1}{a + b + c} \geq \frac{1}{a + b + c} \cdot 3
42
-m * m*(6*20 + 30 \left(-1\right)) = -m^2*90
30,491
84\cdot 90 = \left(87 + 3\cdot (-1)\right)\cdot \left(87 + 3\right) = 87^2 - 3^2 = 7569 + 9\cdot \left(-1\right) = 7560
20,221
\dfrac{1}{5^{\tfrac{1}{4}}} = \frac{5^{3/4}}{5}
15,200
0 = 4 + 2 \times z, 0 = 4 \times (-1) + i \times 2 \implies [-2, 2] = \left[z,i\right]
-20,848
\frac{30 x + 25}{-x*36 + 30 (-1)} = -5/6 \frac{1}{-6 x + 5 (-1)} (-6 x + 5 (-1))
-6,102
\frac{1}{\left(4(-1) + q\right)*2} = \frac{1}{8\left(-1\right) + 2q}
6,698
\left\lceil{\dfrac{1}{-\frac18 + \pi + 3*(-1)}}\right\rceil = 61
39,529
(x\cdot H_1)^T\cdot H_2 = H_1^T\cdot x^T\cdot H_2 = H_1^T\cdot x\cdot H_2
8,032
3 \times 2^k - 2 \times 2^{k + (-1)} = 3 \times 2^k - 2^k = 2^k \times (3 + (-1)) = 2^k \times 2 = 2^{k + 1}
-20,623
-6/(-6)\cdot \left(-9/4\right) = 54/(-24)
-20,887
\frac{1}{25} \cdot (-p \cdot 20 + 30) = \left(6 - 4 \cdot p\right)/5 \cdot \frac55
1,311
\frac{1}{{m \choose j + (-1)}}\cdot {m \choose j} = (m - j)/j = \frac{m}{j} + (-1)
11,086
-\dfrac{1}{8} + \dfrac{3}{16} = 1/16
30,063
\frac{d}{dx} x^r = \lim_{w\to x} \frac{w^r-x^r}{w-x} = \lim_{w\to x}\frac{(w-x)(w^{r-1}+w^{r-2}x + w^{r-3}x^2 + \cdots + x^{r-1})}{w-x}
20,784
1 = -b + h \Rightarrow 1 = h,0 = b