id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
36,502 | 1 = \frac12 + 1/3 + 1/9 + 1/18 |
-18,259 | \frac{1}{x^2 - x*2 + 63 \left(-1\right)}(x * x + x*7) = \dfrac{x*(x + 7)}{(x + 7) (x + 9(-1))} |
18,598 | 5 \cdot \pi/12 = \pi/4 + \frac{1}{6} \cdot \pi |
13,069 | f^3 - 6*f^2 + 11*f + 6*(-1) = (f + (-1))*(f * f - 5*f + 6) = (f + \left(-1\right))*(f + 2*(-1))*\left(f + 3*(-1)\right) |
11,242 | 9/48 + \dfrac{3}{54} = 3/16 + 1/18 = \dots |
-15,125 | \frac{n^5}{\frac{1}{y^6} \cdot \dfrac{1}{n^{10}}} = \frac{n^5}{\frac{1}{y^6 \cdot n^{10}}} |
-725 | \pi \cdot \frac{49}{12} - 4 \cdot \pi = \pi/12 |
-9,201 | 15 p + 45 = 3 \cdot 3 \cdot 5 + 3 \cdot 5 p |
-8,036 | \dfrac{27 - 5 \cdot i}{5 - i \cdot 2} \cdot \dfrac{5 + i \cdot 2}{i \cdot 2 + 5} = \frac{27 - 5 \cdot i}{-i \cdot 2 + 5} |
-9,285 | 2\cdot 2\cdot 2\cdot 5 - 2\cdot 2\cdot 2\cdot s = -8\cdot s + 40 |
450 | z^6 + 1 = (z^2 + 1) \left(z^4 - z^2 + 1\right) = (z z + 1) ((z + 1)^2 - z z) |
-21,700 | -9/8 = -\frac{1}{8}*9 |
-1,247 | \frac{30}{35} = \frac{6}{35*\frac15}*1 = 6/7 |
-10,816 | \dfrac{1}{12} 48 = 4 |
15,335 | ( x, z, p)\cdot ( x', S, Z) \coloneqq \left( x' + x, z + S, p + Z + \left(-x'\cdot z + x\cdot S\right)/2\right) |
27,319 | -q + p - r = -(r + q) + p |
18,983 | z/(c_2) + \tfrac{1}{c_1}\cdot x = \tfrac{1}{c_2\cdot c_1}\cdot (c_2\cdot x + z\cdot c_1) |
35,182 | \frac{\mathrm{d}D}{\mathrm{d}x} = \frac{\mathrm{d}D}{\mathrm{d}x} |
27,242 | \dfrac{1}{3}\cdot (2\cdot a + 2\cdot d + y) = \frac15\cdot (3\cdot a + 4\cdot y) = (2\cdot a + d + 2\cdot y)/3 |
-6,295 | \frac{1}{(2\cdot (-1) + n)\cdot 4} = \frac{1}{n\cdot 4 + 8\cdot \left(-1\right)} |
14,202 | q^2 - 2 \cdot q + 1 = (\left(-1\right) + q) \cdot (\left(-1\right) + q) |
25,876 | \frac{1}{2}(z_n + \frac{2}{z_n}) = z_n - \left(z_n^2 + 2(-1)\right)/(2z_n) |
-2,365 | (-6)^2 = \left(-6\right) \cdot \left(-6\right) = 36 |
24,395 | x^2 \cdot B^2 + 6 \cdot x \cdot B + 9 \cdot (-1) = (x \cdot B)^2 + 5 \cdot x \cdot B + 9 \cdot (-1) = (x \cdot B + 2.5)^2 - 15.25 |
-13,130 | 134.4/4 = 33.6 |
-1,897 | 5/4 \pi = \dfrac167 \pi + \dfrac{\pi}{12} |
2,169 | A \cdot D \cdot t = t \cdot D \cdot A |
-2,321 | \frac{2}{14} = -2/14 + 4/14 |
-7,957 | \frac{-45 - i \cdot 5}{5 \cdot i + 4} = \frac{-5 \cdot i + 4}{4 - 5 \cdot i} \cdot \frac{-45 - 5 \cdot i}{4 + i \cdot 5} |
2,130 | (2*(-1) + d)*(\left(-1\right) + d) = d^2 - d*3 + 2 |
-1,668 | -\pi \cdot \frac{2}{3} + 3/4 \cdot \pi = \dfrac{\pi}{12} |
22,682 | d + g + x = x + d + g |
5,619 | \left(-s + x\right)\cdot \left(x - r\right) = s\cdot r + x \cdot x - (r + s)\cdot x |
20,529 | x = z^2 \implies 2z = \frac{\mathrm{d}x}{\mathrm{d}z} |
-9,286 | -49\times m + 21 = -m\times 7\times 7 + 3\times 7 |
1,172 | k^2 = ((k + 1) \cdot (k + 1) \cdot (k + 1) - k \cdot k \cdot k)/3 - k - \dfrac13 |
-2,350 | \frac{1}{20} = -\dfrac{4}{20} + \frac{1}{20} \cdot 5 |
15,024 | (2 - x)/3 = -\left(1 + x\right)/3 + 1 |
27,808 | -(y + (-1)) - 1 = -y |
-19,997 | \frac{72*(-1) - 54*s}{12*s + 16} = \frac{8 + 6*s}{6*s + 8}*(-9/2) |
-13,021 | 10/18 = \frac59 |
538 | i \cdot \frac{dx}{dx} = \frac{dx}{dy} |
26,267 | 0 = \left(h*q - q\right)*h = h*q*h - q*h |
-23,162 | \frac{1}{2}\cdot \left((-1)\cdot 1/2\right) = -1/4 |
14,111 | B*D*v = D*B*v |
-6,438 | \dfrac{1}{20*(-1) + 2*x} = \frac{1}{2*(10*(-1) + x)} |
11,284 | C^4 + C^2 + 1 = (C^2 + 1)^2 + C^2 = \left(C^2 + C + 1\right)^2 |
6,978 | (-(-g + b)^2 + (b + g)^2)/4 = g\times b |
-26,287 | 2 = C \times e^{(-3) \times 0} = C |
35,185 | 3 = \frac{2}{2} + \frac42 |
4,200 | 0 + 0 + 0 = 1 + (-1) + ((-1) + 1)\cdot ... |
12,813 | \sqrt{x \times x} = \left(x^2\right)^{\frac{1}{2}} = x^{2/2} = x |
22,378 | X \cdot c \cdot E = E \cdot X \cdot c |
6,308 | 0 = x^2*3 - 13*x + 14 \implies 0 = (7*(-1) + 3*x)*(2*\left(-1\right) + x) |
5,392 | \dfrac{1}{2^n} \cdot n! \geq \frac{n^{n/2}}{2^{\frac{1}{2} \cdot 3 \cdot n}} = (\frac{n}{2^3})^{\frac{n}{2}} = \left(n/8\right)^{n/2} |
-4,773 | \frac{5}{1 + z} - \frac{3}{2(-1) + z} = \tfrac{13 (-1) + 2z}{2(-1) + z^2 - z} |
4,703 | 0 = y_3 - y_4*2\Longrightarrow y_3 = 2y_4 |
4,258 | 2 + 2*\sqrt{-2} = 0 + \sqrt{-2}*(2 - \sqrt{-2}) |
15,943 | 25 - 2*\left(--\frac23*3*2 + 4\right) = 9 |
13,552 | (1 + 2k)/2 = 1/2 + k |
5,395 | 4*(-1) + j_1*10 + 3 = 7*j_2 \Rightarrow 10*j_1 - 7*j_2 = 1 |
37,755 | (2 (-1) + 3)^2 = 1 |
-26,159 | -9 \cdot \cos{6 \cdot π} - -9 \cdot \cos{\tfrac{11}{2} \cdot π} = -9 + 0 \cdot (-1) = -9 |
23,878 | h_x^3 = h_x h_x h_x |
13,190 | BE^2 = 16 + 9 + 6(-1) = 19 \implies BE = \sqrt{19} |
7,418 | x^2 + 4 x + 3 = (x + 1) \left(x + 3\right) |
34,616 | 1 + \cos{z} = 1 + \cos{2 \cdot \frac{z}{2}} = 2 \cdot \cos^2{\frac{z}{2}} |
29,200 | \frac{q \cdot q}{\pi}\cdot \pi = q^2 |
24,324 | \dfrac{18}{(1 + 5 + 4\cdot (-1))\cdot 3} = 3 |
22,483 | b \cdot (-h) = -h \cdot b |
-10,569 | 3/(75\cdot y) = \frac13\cdot 3/(y\cdot 25) |
31,046 | \left|{E_1 \cdot \cdots \cdot E_m}\right| = \left|{E_1}\right| \cdot \cdots \cdot \left|{E_m}\right| |
17,279 | \left(2 + y\right) \cdot (4 \cdot (-1) + y^2 - 2 \cdot y) = y^3 - 8 \cdot y + 8 \cdot (-1) |
-15,597 | \frac{a}{\frac{1}{\tfrac{1}{r^6} \frac{1}{a^6}}} 1/r = \dfrac{\frac1r}{a^6 r^6} a |
40,197 | 550 + 55 \cdot \left(-1\right) = 495 < 500 |
23,330 | \frac{l!}{(-k + l)! \cdot k!} = \binom{l}{k} |
-30,970 | t \cdot 60 = 60 t |
9,894 | (2*k)^2 - 2*2*k + 7 = 4*k^2 - 4*k + 7 = 2*(2*k^2 - 2*k) + 7 |
301 | a^3 - b^3 = (-b + a) (a^2 + a b + b^2) |
14,186 | x + b = 2 \cdot b + x - b |
13,437 | \frac{1}{k + n} = \frac{1}{1 + n + (-1) + k} |
1,724 | 2*( q, z) = \left( q, z\right) + ( q, z) = ( 2*q, 2*z) |
12,847 | \frac{\dfrac16}{6}\cdot 1\cdot 5/6 = \frac{5}{216} = 0.023 |
29,216 | \dfrac{-7 + (-1)}{(1 - 7)^3} = \frac{1}{27} |
21,651 | \frac{1}{z} = az/a = a^2 \cdot \frac{1}{za^2} |
3,324 | (1 + x) (1 + x) (x + 1)^{n + 2 (-1)} = \left(x + 1\right)^n |
28,317 | \frac{1}{1 - \dfrac23} = 3 |
-7,159 | \dfrac{1}{78} \cdot 5 = 5/12 \cdot \frac{1}{13} \cdot 2 |
27,344 | \cos(\pi/4) = \sin(\pi/4) = \dfrac{1}{\sqrt{2}} |
25,124 | 24 = \tfrac{1}{2} \cdot 48 |
16,214 | \sin{c} \times \cos{a} + \sin{a} \times \cos{c} = \sin\left(c + a\right) |
4,783 | z^2 + 1 = z^2 + 2 \cdot z + 1 = (z + 1)^2 |
28,449 | I + H = I + H |
-2,027 | \frac{1}{12}\cdot 19\cdot \pi + \pi\cdot 3/4 = \pi\cdot \frac13\cdot 7 |
-20,291 | \dfrac{-2\cdot a + 6}{6 - 2\cdot a}\cdot \dfrac53 = \frac{1}{-a\cdot 6 + 18}\cdot (-10\cdot a + 30) |
1,238 | d \cdot a = \frac{d}{a} = a^3 \cdot d |
-30,858 | y + 3 = \tfrac{1}{y * y * y - y^2}*(-3*y^2 + y^4 + 2*y^3) |
1,242 | x \cdot \left(n' + k\right) = x \cdot n' + k \cdot x |
38,263 | (a^t)^l = \left(a^l\right)^t = a^{t l} |
-22,213 | (k + 2\cdot (-1))\cdot (9\cdot (-1) + k) = k^2 - 11\cdot k + 18 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.