id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
17,525 | 22 - 4\cdot (16 + 21\cdot (k + (-1)) + (-1)) = 42 - 84\cdot k = 21\cdot (2 - 4\cdot k) |
21,040 | \lim_{t \to \infty} \frac1t \cdot (t + 2 \cdot (-1)) = \lim_{t \to \infty} |t + 2 \cdot (-1)|/t |
18,556 | \mathbb{P}(F) \mathbb{P}(A) + 1 - \mathbb{P}(A) - \mathbb{P}(F) = (1 - \mathbb{P}\left(F\right)) (-\mathbb{P}(A) + 1) |
21,496 | x \cdot x + 2 \cdot x + 1 = \left(x + 1\right)^2 |
-7,732 | \left(40 + 16 i + 100 i + 40 (-1)\right)/29 = \frac{1}{29} (0 + 116 i) = 4 i |
2,964 | \sin(x + z) = \cos(z) \cdot \sin\left(x\right) + \sin\left(z\right) \cdot \cos(x) |
28,143 | 3 + x^2 - 3*x = \left(\left(-1\right) + x\right)*(x + (-1)) - x + 2*(-1) |
39,548 | 18.75 = \frac{1}{4} \cdot 75 |
54,605 | 1^{\frac{1}{5}} = 1 |
3,306 | 9^x\cdot 8 = 9^{1 + x} - 9^x |
17,953 | \left(q = h\cdot 120 - 205 q \Rightarrow h\cdot 120 = q\cdot 206\right) \Rightarrow h = q\cdot 103/60 |
-16,346 | \sqrt{4 \cdot 7} \cdot 10 = 10 \sqrt{28} |
46,173 | \frac{1}{30}\cdot 96 = 3.2 |
21,576 | c\cdot g = \dfrac{1}{2}\cdot (c\cdot g + g\cdot c) = g\cdot c |
-3,097 | \sqrt{6} \cdot 9 = (5 + 4) \sqrt{6} |
3,060 | r \cdot r \cdot (-\frac{1}{8 \cdot r \cdot r} + 1) + \frac14 = r^2 + 1/8 |
3,591 | \sin\left(J \cdot 2\right) = \sin\left(J\right) \cdot \cos(J) \cdot 2 |
10,859 | \cos{v \cdot x} = \cos{-x \cdot v} |
-12,841 | \frac{3}{4} = \tfrac{1}{24} \cdot 18 |
-20,867 | \frac{80 \cdot k}{80 + 8 \cdot k} = \frac{10}{k + 10} \cdot k \cdot \frac18 \cdot 8 |
-23,704 | \frac23\dfrac13 = 2/9 |
-27,731 | d/dy (14\cdot \sin{y}) = \cos{y}\cdot 14 |
32,427 | \frac11*0 = \frac02 |
5,878 | |F*u| = |F|*|u| |
1,598 | \binom{m}{m - k} = \frac{m!}{(m - k)!\cdot (m - m - k)!} = \frac{1}{(m - k)!\cdot k!}\cdot m! = \binom{m}{k} |
-4,171 | \frac{8}{7 \cdot t^4} = \frac{8}{t^4} \cdot 1/7 |
37,857 | -2 = 2 \cdot (-1) + 0 |
17,837 | \frac{1}{x^3 + (-1)} = \left(-\dfrac{x + 2}{x^2 + x + 1} + \frac{1}{(-1) + x}\right)/3 |
22,622 | y \geq z \implies y = z |
-19,688 | \frac{24}{8} = 8*3/(8) |
-563 | (e^{i\cdot \pi/2})^{10} = e^{\dfrac{\pi\cdot i}{2}\cdot 10} |
3,211 | \left(7 = (-1) + 8 \implies 8\cdot M + \left(-1\right) = 7^{1 + n\cdot 2}\right) \implies 1 + 7^{1 + 2\cdot n} = M\cdot 8 |
-6,710 | 2/100 + \frac{60}{100} = \dfrac{1}{10}6 + 2/100 |
8,072 | \left(1 + |z_2|\right) |z_1| = (1 + |z_1|) |z_2|\Longrightarrow |z_2| = |z_1| |
11,212 | {-1 \choose r} = (\left(-1\right)*\left(-2*\dotsm*(-1 - r + 1)\right))/r! = (-1)^r |
26,037 | \sqrt{2} \pi/2 = \frac{1}{\sqrt{2}}\pi |
20,481 | (a\times f)^n = a^n\times f^n = 1 \Rightarrow f^{-n} = a^n |
245 | \frac{1}{2 + z} = y \implies (1 - 2\cdot y)/y = z |
16,133 | 2860 = {4 \choose 1} \cdot {3 \choose 3} \cdot {13 \choose 4} |
23,523 | \frac{7}{161} = 1/23 |
23,592 | \frac{1}{21}5*6/22 = \frac{1}{77}5 |
15,629 | \left\lceil{\frac{10}{5 + (-1)}}\right\rceil = \left\lceil{\dfrac{10}{4}}\right\rceil = \left\lceil{2.5}\right\rceil = 3 |
27,597 | \frac{1}{2^{\frac{1}{n}}} = \tfrac{h}{x}\Longrightarrow \frac{x}{h} = 2^{1/n} |
-30,652 | 5 \cdot (-1) - 5 \cdot \lambda^2 = -5 \cdot (1 + \lambda^2) |
19,836 | 1 + y + y^2 + y^3\times \dotsm = \dfrac{1}{-y + 1} |
-7,593 | (22 + 32 \cdot i + 55 \cdot i + 80 \cdot \left(-1\right))/29 = (-58 + 87 \cdot i)/29 = -2 + 3 \cdot i |
29,551 | a^4 \cdot z = z = a^3 \cdot z |
37,365 | \operatorname{atan}\left(-4\right) = x \Rightarrow \tan(x) = -4 |
7,577 | \frac{1}{y^2 + 1}(2y^2 + y) = 1 + \frac{y^2 + y + (-1)}{y^2 + 1} = 1 + \frac{2y^2 + 2y + 2(-1)}{2\left(y * y + 1\right)} |
8,855 | \frac{1}{13}*\left(3^{x + 1} + 3^x + 3^{(-1) + x}\right) = 3^{(-1) + x} |
32,686 | 6y'^2 v + 3v^2 y'' + 6x = 0 \Rightarrow vy' * y'*2 + v^2 y'' + x*2 = 0 |
22,571 | \lim_{l \to \infty} \sin\left(y_l\right) = 0 \neq 1 = \lim_{l \to \infty} \sin\left(y_l\right) |
35,278 | (-X)^m = X^m = -X^m |
-5,012 | 3.6\times 10^{2 + 0} = 10 \times 10\times 3.6 |
18,469 | \tfrac{1}{(1 - x)^2}\cdot (1 + x^2 + x) = \frac{\left(1 - x\right)^2 + 3\cdot x}{(1 - x)^2} = 1 + \dfrac{3}{(1 - x)^2}\cdot x |
1,520 | \sqrt{625/2 + \dfrac{1}{2}\cdot 625} = \sqrt{625} = 25 |
-10,719 | \dfrac{3}{3}\cdot \left(-\dfrac{1}{16\cdot \left(-1\right) + s\cdot 4}\cdot 6\right) = -\frac{18}{s\cdot 12 + 48\cdot (-1)} |
15,050 | 128^{1/2} = (11^2 + 7)^{1/2} \approx 11 + \dfrac{7}{22} |
26,402 | \frac{3}{2} \cdot \frac{1}{2}/2 = 3/8 |
10,185 | a^{b \times b} = a^{b^2} |
15,877 | (x \cdot x - x \cdot z + z^2) \cdot (x + z) = z \cdot z \cdot z + x^3 |
9,896 | \dfrac{1}{-\dfrac{1}{f} + \frac{1}{f - 1/b}} = -f + b*f*f |
8,815 | x \lt y \implies \frac{x}{2} \lt \frac{y}{2} |
54,750 | 799 = 17\cdot 47 |
-30,547 | 15/30 = 30/60 = \dfrac{60}{120} = \frac{1}{2} |
12,951 | 1 + x^4 = (x^3 - x^2 + x + (-1))*(1 + x) + 2 |
-8,363 | -\frac{1}{-4}*24 = 6 |
17,756 | 2^{\frac{1}{2}} = 1.414213562373 \times \dots |
-5,573 | \frac{2\cdot z}{z^2 - z + 2\cdot (-1)}\cdot 1 = \tfrac{2\cdot z}{(1 + z)\cdot \left(z + 2\cdot (-1)\right)} |
874 | \frac{\partial}{\partial Z_2} Z_1 = \frac{1}{Z_2 + Z_1}\cdot (3\cdot Z_2 - Z_1) = \dfrac{1}{1 + Z_1/(Z_2)}\cdot (3 - \dfrac{1}{Z_2}\cdot Z_1) |
-4,681 | (1 + z) (z + 5) = z^2 + 6z + 5 |
15,010 | m + {m \choose 2} \cdot 2 = m \cdot m |
21,014 | z^3 + z*3 + 2 (-1) = 6 (-1) + \left(z + 1\right) (z^2 - z + 4) |
29,919 | \frac{r_3}{(x + (-1))^2} + \frac{1}{(-1) + x} \cdot r_2 = \frac{r_3 + r_2 \cdot (\left(-1\right) + x)}{((-1) + x) \cdot ((-1) + x)} |
2,336 | \frac{10}{24} = (6 + 4)/24 |
-2,888 | \sqrt{3} \cdot (1 + 4) = \sqrt{3} \cdot 5 |
2,324 | y^V*A*y = (y^V*A*y)^V = y^V*A^V*y = -y^V*A*y \Rightarrow y*A*y^V = 0 |
-26,544 | 100 - 9\cdot z \cdot z = 10^2 - (z\cdot 3) \cdot (z\cdot 3) |
-5,785 | \frac{1}{20 + 4 \cdot y} \cdot 2 = \tfrac{2}{4 \cdot \left(y + 5\right)} |
44,865 | \overline{0} = \overline{0} \overline{4} |
25,876 | -\dfrac{1}{x_n \cdot 2} \cdot \left(2 \cdot \left(-1\right) + x_n^2\right) + x_n = (x_n + \frac{2}{x_n})/2 |
11,891 | \frac{Z}{b} \cdot a^{1/2} = \frac{Z \cdot x}{( x^2 - a, b)} \cdot 1 = \frac{Z}{x^2 - a} \cdot \frac{1}{b \cdot x} |
38,771 | 7 = -\frac{10}{2} + 12 |
-9,123 | 2 \cdot 2 \cdot 3 \cdot 3 \cdot p - 2 \cdot 2 \cdot 3 = 36 \cdot p + 12 \cdot (-1) |
10,440 | \binom{n + 3 + (-1)}{3 + (-1)} = \binom{n + 2}{2} = \tfrac12 \cdot \left(n + 1\right) \cdot \left(n + 2\right) |
5,965 | \sum_{n=1}^\infty c \cdot (2 \cdot (-1) - 1)^n \cdot n = \sum_{n=1}^\infty c \cdot n \cdot (-3)^n |
-1,822 | \pi\cdot \dfrac{1}{3}\cdot 4 = \pi\cdot 13/12 + \dfrac{\pi}{4} |
10,775 | \frac{1}{x + (-1)} \cdot (x^2 \cdot x + (-1)) = x^2 + x + 1 |
-16,492 | 8 \cdot 275^{1/2} = 8 \cdot (25 \cdot 11)^{1/2} |
6,311 | \sin(x + u) = \sin{u} \cos{x} + \sin{x} \cos{u} |
41,105 | 1000\cdot \left(-1\right) + 1 = -999 |
9,844 | ( x + w, x + w) = \left\{w\right\} \implies 0 = [x,w] |
4,685 | 6/y \leq -8 \implies y \geq -\frac{6}{8} = -\frac143 |
6,783 | z + 2\times (-1) = 4\times (z + 2) = 4\times z + 8 |
37,731 | E^2 = E^2 |
-23,150 | -4 = 3 (-4/3) |
-3,605 | \tfrac{40\cdot n^2}{32\cdot n} = 40/32\cdot \dfrac{n^2}{n} |
16,780 | \frac{e^{-9} 9^9}{9!} = \frac{e^{-9} 9^8 * 9}{8! * 9} |
40,547 | \cos{4*x} = \cos^2{2*x} - \sin^2{2*x} = 2*\cos^2{2*x} + (-1) |
874 | \frac{\mathrm{d}x}{\mathrm{d}U} = \frac{3\cdot U - x}{U + x} = \tfrac{1}{1 + \dfrac{x}{U}}\cdot \left(3 - \frac1U\cdot x\right) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.