id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
14,182 | \frac{90\cdot 2}{1.5 \cdot 1.5} = 80 |
755 | \|E \cdot z\|^2 - \|Z \cdot z\|^2 = ( E \cdot z, E \cdot z) - ( Z \cdot z, Z \cdot z) = ( E^2 \cdot z, z) - ( Z^2 \cdot z, z) = ( \left(E^2 - Z^2\right) \cdot z, z) |
27,116 | (h - f)^2/12 + \left((h + f)/2\right)^2 = \frac13(f^2 + h * h + fh) |
-1,470 | 2*\dfrac{1}{7}/\left(\left(-4\right)*1/9\right) = -9/4*\dfrac{2}{7} |
14,022 | x^3 + 2 x^2 + x + 2 = (1 + x^2 + 0 x) (2 + x) |
18,899 | |g| - \ln\left(|b|\right) = -\ln(|b|) + |g| |
22,565 | e^y \cdot e^{y + 1} = e^{y + y + 1} = e^{2 \cdot y + 1} |
-18,423 | \dfrac{1}{(x + 10)*x}*(x + 10)*(x + 4*(-1)) = \frac{1}{x * x + 10*x}*(x * x + x*6 + 40*(-1)) |
4,323 | 1^3 + 2 \times 2 \times 2 + ... + l^3 = (1 + 2 + ... + l)^2 |
7,613 | \mathbb{E}[X] \times \mathbb{E}[Y] = \mathbb{E}[Y \times X] |
22,180 | x + \left(-6x + 240\right)/12 = x/2 + 20 |
5,036 | \frac 1{\cos^2 t }= 1 + \tan^2 t |
33,455 | 1\cdot 3+3 \cdot 3+3\cdot6 = 30 |
19,132 | 0 \leq z + 3 \cdot (-1) \Rightarrow 3 \leq z |
8,400 | \tfrac{1}{2} - x/2 = (1 - x)/2 |
8,961 | -D \cdot A + B \cdot A + B \cdot D = -A \cdot D + B \cdot A + B \cdot D |
-3,807 | \frac{18 t^5}{t\cdot 42} = \tfrac{t^5}{t}\cdot 18/42 |
-4,152 | \frac{36}{66}\cdot \frac{q^5}{q^4} = \dfrac{36\cdot q^5}{66\cdot q^4} |
25,082 | r \cdot r\cdot A\cdot x = x\cdot r^2\cdot A |
-20,849 | \frac{1}{2 + x}(x + 2)\cdot 7/1 = \frac{1}{2 + x}(x\cdot 7 + 14) |
36,888 | 5400 = \binom{5}{2}*3!*3*6*5 |
4,563 | \frac{1}{\left(-a/y + 1\right)^2\cdot y \cdot y} = \frac{1}{(y - a)^2} |
-14,128 | 6 + \dfrac{56}{7} = 6 + 8 = 6 + 8 = 14 |
2,954 | x \cdot f = -(1 - x \cdot f) + 1 |
9,179 | (f + a) \cdot (f + a) = a^2 + 2 \cdot a \cdot f + f^2 |
18,537 | \frac{1}{3}*(d + 2) = 2 \Rightarrow d = 4 |
18,118 | (x^2 + z * z)^2/2 + \frac12*(x^2 - z^2) * (x^2 - z^2) = x^4 + z^4 = (x^2 + z * z)^2 - 2*(x*z)^2 |
5,542 | \cot(-\dfrac{1}{2}*37*\pi) = 0 |
3,645 | D \cap Y = Y\Longrightarrow \left\{Y, D\right\} |
12,576 | \frac{1}{G X} = 1/(X G) |
32,970 | (0, ∞) = (0, 1) |
22,989 | y + \frac{p}{y} = q\Longrightarrow y = \left(q \pm \sqrt{-p*4 + q^2}\right)/2 |
19,099 | x \cdot x^{l + (-1)} = x^l |
8,153 | \tan^2(z\times d) = \tan^2(-z\times d) |
6,538 | \left(-1\right) + k*2 = ((-1) + k*2) (2 + (-1)) |
-4,345 | \dfrac{p^3}{p^2} = \dfrac{pp p}{pp} = p |
29,676 | z*y*y = y*z*y |
-10,590 | -\dfrac{1}{60 \cdot t} \cdot 4 = -\frac{1}{15 \cdot t} \cdot \frac{1}{4} \cdot 4 |
19,751 | \frac{1}{\sqrt{2}}\cdot \pi = \tfrac{\pi\cdot \sqrt{2}}{2} |
1,095 | 2a - a + 1 = 2a - a + \left(-1\right) = a + (-1) |
16,212 | 991 + 109 \times (-1) + 840 \times 883 = 882 + 840 \times 883 |
-1,325 | (\tfrac17*(-5))/(\frac12*(-9)) = -\frac57*\left(-\frac{2}{9}\right) |
16,159 | (3 + 6 + 9)/2 + \dfrac12 \cdot (3 + 9) = 9 + 6 = 15 |
18,920 | (\frac12\cdot e)^n = (1/2)^n\cdot e^n |
27,056 | -o + 21 = 3\cdot 7 - o |
38,714 | \sum_{i=1}^{n + 1} a_i\cdot x_i = \sum_{i=1}^n a_i\cdot x_i + a_{n + 1}\cdot x_{n + 1} = (1 - a_{n + 1})\cdot \sum_{i=1}^n \frac{1}{1 - a_{n + 1}}\cdot a_i\cdot x_i + a_{n + 1}\cdot x_{n + 1} |
28,026 | \frac{1}{2 + (-1)} \cdot (2 \cdot (-1) + 10) = 8 |
49,490 | 8\cdot (-1) + 32 = 24 |
32,891 | \sin{8\cdot x} = \sin{8\cdot \left(T + x\right)}\Longrightarrow 2\cdot \pi + 8\cdot x = (T + x)\cdot 8 |
-11,764 | \frac{1}{100} = (10^{-1})^2 |
-9,846 | -1^{-1} \cdot \tfrac{8}{25}/20 = \frac{1}{1 \cdot 25 \cdot 20} \cdot ((-1) \cdot 8) = -\frac{1}{500} \cdot 8 = -\frac{2}{125} |
20,514 | \binom{20}{7} = \frac{1}{7! \left(20 + 7(-1)\right)!}20! = 77520 |
-19,203 | \frac{1}{3} = A_s/\left(81\cdot \pi\right)\cdot 81\cdot \pi = A_s |
-9,598 | 0.01\cdot \left(-37\right) = -\dfrac{1}{100}\cdot 37.5 = -3/8 |
-11,627 | i \cdot 21 + 3 = -9 + 12 + 21 i |
5,409 | r_i\cdot p_i + p_x\cdot r_j - p_x\cdot p_i\cdot r_j = \left(1 - p_i\right)\cdot r_j\cdot p_x + r_i\cdot p_i |
-3,863 | 9/4\cdot z^3 = \frac{9}{4}\cdot z^3 |
568 | g*f = (-g^2 + (f + g)^2 - f * f)/2 |
3,706 | 1 - \cos{x} = 2\cdot \sin^2{x/2} \leq \frac{1}{2}\cdot x^2 |
9,896 | -a + a \cdot d \cdot a = \tfrac{1}{-\frac{1}{a} + \tfrac{1}{a - \frac{1}{d}}} |
-4,565 | (2 + x)\times \left(3 + x\right) = x^2 + x\times 5 + 6 |
-29,730 | \frac{\mathrm{d}}{\mathrm{d}y} (3 + y^4 \cdot 4 - y^3 \cdot 7) = -y^2 \cdot 21 + 16 \cdot y^3 |
24,610 | 1 + 34/55 = \frac{1}{55} \cdot 89 |
17,414 | \cos{\tfrac{1}{6} \cdot \pi} = \sqrt{3}/2 |
-457 | \left(e^{i*\pi*5/4}\right)^6 = e^{6*\frac54*\pi*i} |
38,837 | \frac{3}{1 - \frac{1}{10}} = \frac{10}{3} |
9,198 | 1/f = f^{\frac{a}{y}}\cdot f^{\frac1a\cdot y} = f^{a/y}\cdot f^y |
6,247 | \left( 3, 4, 2\right)^T - 2/3 ( 2, 6, 3)^T = ( 5/3, 0, 0)^T = \frac135 ( 1, 0, 0)^T |
43,953 | 937\cdot 13 = 1 + 2436\cdot 5 |
2,681 | \binom{(-1) + m}{0} = \binom{m}{0} |
37,877 | 3\cdot 4 + 5\cdot 4 + 4\cdot 3 = 8\cdot 8 - 5\cdot 4 |
16,697 | 80 = 40 + 2 \cdot 10^2 - 16 \cdot 10 |
3,797 | -x*(f + g) = -x*(g + f) |
12,753 | (q - (q + (q\cdot \ldots)^{1/2})^{1/2})^{1/2} = \left(\left(1 + 4\cdot (q + \left(-1\right))\right)^{1/2} + (-1)\right)/2 |
15,029 | \frac{1}{4 + (y + (-1))^2} = \frac{1}{5 + y^2 - 2\cdot y} |
25,373 | \frac{1}{4}\cdot (1 + 1)\cdot \left(1 + 3\right)\cdot (1 + 2) = 6 |
21,241 | \frac{12!}{4!*1!*1!*6!} = 27720 |
25,807 | 0 - 1/\left(2\cdot 6\right) = -1/12 |
3,279 | 1 + 2^0 + 2^1 \cdots*2^{n + (-1)} = 2^n |
11,805 | \dfrac{2\cdot \tan\left(z/2\right)}{1 + \tan^2\left(z/2\right)}\cdot 1 = \sin\left(z\right) |
2,241 | p - 1/2 = p - \tfrac{1}{2} \cdot (p + 1) = \dfrac{1}{2} \cdot (p + (-1)) |
25,513 | (y + 1)^2 = y^2 + 2y + 1 |
28,214 | 3 \cdot \frac{1}{10}/2 = \frac{1}{20} \cdot 3 |
22,889 | 4\cdot y = 2\cdot 2\cdot y |
-4,616 | 5*(-1) + x^2 - 4*x = (1 + x)*(x + 5*\left(-1\right)) |
19,958 | 1000 = 30 \cdot 30 + 10 \cdot 10 |
4,852 | d/dx e^x = d/dx (x \cdot 4) |
14,422 | \frac{3}{3 + 5}*\left(1 - 0.4\right)*0.4*\frac{1}{8 + 4} 8 = 3/50 |
10,400 | -x - x \times x = \frac{1}{1 - x}\times (x^3 - x) = \frac{1}{1 - x} |
33,618 | 2^{b/2} = (\sqrt{2})^b |
18,441 | f*l + l*h = l*(f + h) |
-6,732 | 20/100 + 2/100 = 2/10 + 2/100 |
39,359 | 5^{2k} = (5^2)^k = 25^k |
6,122 | \frac{1}{HA} = 1/(HA) |
2,165 | 1/(T\cdot S) = \dfrac{1}{T\cdot S} |
15,161 | \frac{x^3-1}{x-1}=x^2+x+1 |
5,385 | 15/28 = 180/336 |
18,819 | c_1 \cdot c_2 = \frac12 \cdot (c_2 + c_1)^2 - c_2^2/2 - \frac{c_1^2}{2} |
15,687 | 1-\frac{6}{36}=\frac{30}{36}=\frac{5}{6} |
24,181 | b \cdot c \cdot c = c = b \cdot c \cdot c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.