id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-22,764 | \frac{5 \cdot 4}{5 \cdot 9} = 20/45 |
9,350 | \dfrac{1}{2*2} = \frac{1}{2} * \frac{1}{2} = \frac{1}{4} |
-8,856 | 80\cdot \pi = \pi\cdot 16 + 16\cdot \pi + \pi\cdot 48 |
7,471 | 7 = 3 \cdot (-1) + \frac{5 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 3} |
17,408 | \cot(-\tfrac{\pi}{7} + \pi/2) = \cot{\frac{5*\pi}{14}} |
31,417 | 3 = \frac{(1 + 2)!}{2! \cdot 1!} |
22,014 | \cos(X_2 + X_1) = \cos{X_1}\cdot \cos{X_2} - \sin{X_1}\cdot \sin{X_2} |
-22,772 | 54/90 = \frac{54}{5*18}1 |
27,696 | (x + 1)^2 = \sum_{k=1}^{x + 1} k + \sum_{k=1}^x k = 2\sum_{k=1}^x k + x + 1 |
20,577 | (\left(-1\right) \cdot g)/11 = -\frac{g}{11} |
-15,697 | \frac{\frac{1}{x^3} n^4}{x^9 \frac{1}{n^3}}1 = \frac{1}{\frac{x^3}{n^4} \dfrac{1}{n \cdot n^2 \frac{1}{x^9}}} |
20,039 | (P - E) \left(E + P\right) = P^2 - E^2 |
32,212 | \pi \cdot \frac{1}{4}/(\frac{1}{\pi}) = \frac{\pi^2}{4} |
5,306 | r + 1 = 0 \implies -1 = r |
-22,831 | 72/16 = 8\cdot 9/(2\cdot 8) |
-18,457 | 3\cdot g + 10\cdot (-1) = 9\cdot (g + 5\cdot (-1)) = 9\cdot g + 45\cdot (-1) |
45,432 | 2*9 = 9 + 1 + 0 + 8 |
4,480 | e^x\cdot 6 + C = y\cdot (x + 3\cdot (-1)) \Rightarrow \frac{C + 6\cdot e^x}{x + 3\cdot (-1)} = y |
6,870 | \frac{1}{((-1) + x)!}\cdot (Z - x + x + (-1))! = \frac{(Z + \left(-1\right))!}{(x + (-1))!} |
27,351 | 9 = -1 + 10 = -1 + 10^{\frac{1}{2}} \cdot 10^{\frac{1}{2}} = (1 + 10^{1 / 2})\cdot (-1 + 10^{\frac{1}{2}}) |
-17,015 | -6 = -6\left(-z\right) - 24 = 6z - 24 = 6z + 24 \left(-1\right) |
29,630 | (B + A) (-A + B) = B * B - A * A |
36,741 | -\frac{1}{2} + 1 = -1/2 + 1 |
33,589 | (b + f) (x + 1) = \left(1 + x\right) f + b*(x + 1) |
7,212 | e^{1 + |x_2 - x_1|} = e^{|-x_1 + x_2|} e^1 |
36,799 | -\frac{4}{4} + 4 \cdot \left(4 + 4\right) + 4 = 35 |
5,935 | z \cdot z \cdot z \cdot y^3 = (z \cdot y)^3 |
-11,977 | 26/45 = p/(18 \pi)\cdot 18 \pi = p |
21,557 | 6 + \left(3 + x + d\right)/9 = (d + 57 + x)/9 |
-4,774 | \frac{-6\times z + 8\times (-1)}{z^2 + 4\times (-1)} = -\dfrac{5}{z + 2\times (-1)} - \frac{1}{z + 2} |
22,923 | (10^x + \left(-1\right)) \cdot t = 10^x \cdot t - t |
-2,051 | \pi \cdot \frac{1}{12} \cdot 5 + \pi \cdot 5/6 = \dfrac54 \cdot \pi |
20,935 | 5*(\left(-1\right) + a) + 25 = 153 \Rightarrow 5*((-1) + a) = 128 |
-20,828 | \frac{-6\cdot q + 24\cdot (-1)}{56\cdot \left(-1\right) - q\cdot 14} = \frac{3}{7}\cdot \frac{1}{8\cdot (-1) - 2\cdot q}\cdot (-2\cdot q + 8\cdot \left(-1\right)) |
13,841 | \cosh\left(t\right) = \dfrac{1}{2} \cdot (e^t + e^{-t}) = \cos\left(i \cdot t\right) |
126 | \cos(\frac{x}{2}) = \sin\left(x\right)/(2\cdot \sin\left(x/2\right)) |
955 | \frac{\frac17}{1/3\cdot \frac14} = 12/7 |
-6,090 | \frac{2}{2\cdot k + 12\cdot \left(-1\right)} = \frac{2}{2\cdot \left(6\cdot (-1) + k\right)} |
-11,774 | 16/49 = \left(\frac{4}{7}\right) \cdot \left(\frac{4}{7}\right) |
11,879 | (x + 3)^{1/2} = (x + 2)^2 + (-1) = (x + 3)^2 - 2\cdot (x + 3) |
6,468 | \frac{\text{d}}{\text{d}t} e^Y = Ye^Y = e^Y Y |
4,159 | -\left(n + (-1)\right)^2 = -n^2 + 4 n - 2 n + (-1) |
-20,384 | 4/4*\frac{(-1)*r}{-r*5 + 4*(-1)} = \dfrac{1}{-20*r + 16*(-1)}*(r*(-4)) |
-25,050 | \frac39\cdot 2/8 = \frac{6}{72} = \frac{1}{12} |
-26,620 | -z^2 + 6 \cdot 6 = \left(6 - z\right)\cdot (z + 6) |
-2,428 | (1 + 5)*\sqrt{13} = 6*\sqrt{13} |
-18,710 | 0.3811 = \left(-1\right) \cdot 0.3446 + 0.7257 |
210 | \sqrt{x \cdot x - 2\cdot x\cdot y + y^2} = \sqrt{(x - y)^2} = |x - y| |
-5,768 | \frac{2y}{y^2 + y*14 + 45} = \frac{2y}{(y + 5) (9 + y)} |
-7,987 | \frac{18 - i*4}{-3 - 5*i}*\frac{1}{-3 + i*5}*(5*i - 3) = \frac{1}{-5*i - 3}*(-4*i + 18) |
910 | (1 + \cos\left(q*2\right))/2 = \cos^2(q) |
-22,128 | \frac17 \cdot 6 = \frac{30}{35} |
31,739 | n \cdot 2 = -\left(\sqrt{-n \cdot 2}\right)^2 |
28,562 | g \cdot l \cdot (D \cup X) = D \cup X = g \cdot l \cdot D \cup g \cdot l \cdot X |
-3,918 | \frac{t^5}{t^2}*66/24 = \frac{t^5*66}{24 t^2} |
17,091 | \tan(270 + 2 \cdot \theta) = \tan(90 \cdot 4 - -2 \cdot \theta + 90) |
24,746 | d_1 + d_2 + c = d_1 + d_2 + c |
-19,587 | 7/4 \cdot 5/9 = \frac{1/4 \cdot 7}{9 \cdot \frac{1}{5}} |
-6,558 | \frac{4 c}{81 + c^2 - 18 c} = \frac{c*4}{(9 (-1) + c) (9 (-1) + c)} |
-20,363 | 4/7*\frac{q + 9}{9 + q} = \frac{q*4 + 36}{63 + q*7} |
33,138 | Y_j\cdot Y_x = Y_j\cdot Y_x |
35,357 | \mathbb{E}\left[\dfrac1X\right] = \mathbb{E}\left[X\right]^{-1} |
8,323 | -77*43 + 23*144 = 1 |
17,599 | B^3 + 1 = \left(B + 1\right) \cdot (1 + B^2 - B) |
27,021 | \pi^{1/2}/2 = \int_0^\infty e^{y^2}\,dy \gt \int_0^1 e^{y^2}\,dy |
5,563 | 2(3(-1) + l) + l = 3l + 6(-1) |
27,093 | F \cdot x \cdot y = y \cdot x \cdot F |
17,628 | \frac{H_n}{H_{1 + 2 \cdot n} - H_n/2} = \frac{1}{-1/2 + H_{2 \cdot n + 1}/(H_n)} |
3,299 | \tfrac{3}{4} = -\dfrac{1}{4} + 1 |
47,072 | 2^9*3*11*31 = 523776 |
-14,030 | \frac{1}{6 + 2}\cdot 56 = 56/8 = 56/8 = 7 |
-17,743 | 32 \cdot (-1) + 55 = 23 |
-9,295 | 3*3*3*3 p - 2*3*3 = 81 p + 18 \left(-1\right) |
11,423 | \tan(\tan^{-1}(x) + \tan^{-1}(x^3)) = \dfrac{1}{1 - x^4}\cdot (x + x^3) = \frac{1}{1 - x^2}\cdot x |
9,922 | (z - a) \cdot \left(z - b\right) = z^2 - (a + b) \cdot z + a \cdot b |
-8,269 | (-5)\cdot (-9) = 45 |
-19,473 | \frac{\frac17\cdot 8}{3} = 1/(3\cdot \frac{7}{8}) |
-26,554 | 10^2 - \left(3\cdot y\right)^2 = (10 + 3\cdot y)\cdot (10 - 3\cdot y) |
16,284 | \binom{4}{3} \cdot \binom{(-1) + 0 + 4}{0} = 4 |
-26,617 | 28 - x * x*7 = 7*(-x * x + 4) |
23,810 | \tanh\left(x\right) = \sinh(x)/\cosh(x) = \frac{1}{1 + e^{-2 \cdot x}} \cdot \left(1 - e^{-2 \cdot x}\right) |
18,704 | -2 \cdot (i + 1) = (-2) \cdot (-1) - 2 \cdot (i + 2) |
-952 | \frac{1}{1} 2 = 2 |
-7,425 | \frac16*4*\frac{3}{5}*2/4 = 1/5 |
6,210 | \sin(\alpha + \tfrac14*\pi) = \cos{\frac{\pi}{4}}*\sin{\alpha} + \sin{\tfrac{1}{4}*\pi}*\cos{\alpha} |
-20,621 | \frac{1}{-K \cdot 70 + 21 \cdot (-1)} \cdot (K \cdot (-7)) = \frac{1}{3 \cdot (-1) - 10 \cdot K} \cdot (K \cdot (-1)) \cdot \dfrac{1}{7} \cdot 7 |
41,212 | \frac{1}{2^{50}}*100! = 82890330549595738924128375352277498403022775854137923684377543671801902285904897746019649652421639883795821220526555136000000000000000000000000 |
6,519 | |f|/|x| = |\dfrac{f}{x}| |
21,439 | E((-E(A) + A) \cdot (-E(A) + A)) = E(A^2) - E(A)^2 |
46,744 | 2\times 17^1 + 1 = 35 = 5\times 7 |
23,186 | \frac{1}{-x + f} = -\frac{1}{x - f} |
1,050 | \frac45 \cdot y + \frac{1}{4} \cdot y = \dfrac{21}{20} \cdot y |
16,164 | A\times f = f\times A |
-26,627 | 16 \cdot x^6 + 81 \cdot (-1) = -9^2 + \left(4 \cdot x^3\right)^2 |
321 | 3 + 2*\sqrt{2} + 3 - 2*\sqrt{2} = 6 |
20,288 | 7^{369}/350 = 7^{368}/50 |
32,672 | h^{f + g} = h^f*h^g |
21,793 | \alpha_n+\beta_n=\beta_n+\alpha_n |
22,676 | \cos(z^3) + (-1) = 1 + (-1) - z^6/2 + \dots = \frac{1}{2} \cdot ((-1) \cdot z^6) + \dots |
20,695 | \frac{1}{x^2} \times k \times k = \left(k/x\right)^2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.