id
int64
-30,985
55.9k
text
stringlengths
5
437k
-22,764
\frac{5 \cdot 4}{5 \cdot 9} = 20/45
9,350
\dfrac{1}{2*2} = \frac{1}{2} * \frac{1}{2} = \frac{1}{4}
-8,856
80\cdot \pi = \pi\cdot 16 + 16\cdot \pi + \pi\cdot 48
7,471
7 = 3 \cdot (-1) + \frac{5 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 3}
17,408
\cot(-\tfrac{\pi}{7} + \pi/2) = \cot{\frac{5*\pi}{14}}
31,417
3 = \frac{(1 + 2)!}{2! \cdot 1!}
22,014
\cos(X_2 + X_1) = \cos{X_1}\cdot \cos{X_2} - \sin{X_1}\cdot \sin{X_2}
-22,772
54/90 = \frac{54}{5*18}1
27,696
(x + 1)^2 = \sum_{k=1}^{x + 1} k + \sum_{k=1}^x k = 2\sum_{k=1}^x k + x + 1
20,577
(\left(-1\right) \cdot g)/11 = -\frac{g}{11}
-15,697
\frac{\frac{1}{x^3} n^4}{x^9 \frac{1}{n^3}}1 = \frac{1}{\frac{x^3}{n^4} \dfrac{1}{n \cdot n^2 \frac{1}{x^9}}}
20,039
(P - E) \left(E + P\right) = P^2 - E^2
32,212
\pi \cdot \frac{1}{4}/(\frac{1}{\pi}) = \frac{\pi^2}{4}
5,306
r + 1 = 0 \implies -1 = r
-22,831
72/16 = 8\cdot 9/(2\cdot 8)
-18,457
3\cdot g + 10\cdot (-1) = 9\cdot (g + 5\cdot (-1)) = 9\cdot g + 45\cdot (-1)
45,432
2*9 = 9 + 1 + 0 + 8
4,480
e^x\cdot 6 + C = y\cdot (x + 3\cdot (-1)) \Rightarrow \frac{C + 6\cdot e^x}{x + 3\cdot (-1)} = y
6,870
\frac{1}{((-1) + x)!}\cdot (Z - x + x + (-1))! = \frac{(Z + \left(-1\right))!}{(x + (-1))!}
27,351
9 = -1 + 10 = -1 + 10^{\frac{1}{2}} \cdot 10^{\frac{1}{2}} = (1 + 10^{1 / 2})\cdot (-1 + 10^{\frac{1}{2}})
-17,015
-6 = -6\left(-z\right) - 24 = 6z - 24 = 6z + 24 \left(-1\right)
29,630
(B + A) (-A + B) = B * B - A * A
36,741
-\frac{1}{2} + 1 = -1/2 + 1
33,589
(b + f) (x + 1) = \left(1 + x\right) f + b*(x + 1)
7,212
e^{1 + |x_2 - x_1|} = e^{|-x_1 + x_2|} e^1
36,799
-\frac{4}{4} + 4 \cdot \left(4 + 4\right) + 4 = 35
5,935
z \cdot z \cdot z \cdot y^3 = (z \cdot y)^3
-11,977
26/45 = p/(18 \pi)\cdot 18 \pi = p
21,557
6 + \left(3 + x + d\right)/9 = (d + 57 + x)/9
-4,774
\frac{-6\times z + 8\times (-1)}{z^2 + 4\times (-1)} = -\dfrac{5}{z + 2\times (-1)} - \frac{1}{z + 2}
22,923
(10^x + \left(-1\right)) \cdot t = 10^x \cdot t - t
-2,051
\pi \cdot \frac{1}{12} \cdot 5 + \pi \cdot 5/6 = \dfrac54 \cdot \pi
20,935
5*(\left(-1\right) + a) + 25 = 153 \Rightarrow 5*((-1) + a) = 128
-20,828
\frac{-6\cdot q + 24\cdot (-1)}{56\cdot \left(-1\right) - q\cdot 14} = \frac{3}{7}\cdot \frac{1}{8\cdot (-1) - 2\cdot q}\cdot (-2\cdot q + 8\cdot \left(-1\right))
13,841
\cosh\left(t\right) = \dfrac{1}{2} \cdot (e^t + e^{-t}) = \cos\left(i \cdot t\right)
126
\cos(\frac{x}{2}) = \sin\left(x\right)/(2\cdot \sin\left(x/2\right))
955
\frac{\frac17}{1/3\cdot \frac14} = 12/7
-6,090
\frac{2}{2\cdot k + 12\cdot \left(-1\right)} = \frac{2}{2\cdot \left(6\cdot (-1) + k\right)}
-11,774
16/49 = \left(\frac{4}{7}\right) \cdot \left(\frac{4}{7}\right)
11,879
(x + 3)^{1/2} = (x + 2)^2 + (-1) = (x + 3)^2 - 2\cdot (x + 3)
6,468
\frac{\text{d}}{\text{d}t} e^Y = Ye^Y = e^Y Y
4,159
-\left(n + (-1)\right)^2 = -n^2 + 4 n - 2 n + (-1)
-20,384
4/4*\frac{(-1)*r}{-r*5 + 4*(-1)} = \dfrac{1}{-20*r + 16*(-1)}*(r*(-4))
-25,050
\frac39\cdot 2/8 = \frac{6}{72} = \frac{1}{12}
-26,620
-z^2 + 6 \cdot 6 = \left(6 - z\right)\cdot (z + 6)
-2,428
(1 + 5)*\sqrt{13} = 6*\sqrt{13}
-18,710
0.3811 = \left(-1\right) \cdot 0.3446 + 0.7257
210
\sqrt{x \cdot x - 2\cdot x\cdot y + y^2} = \sqrt{(x - y)^2} = |x - y|
-5,768
\frac{2y}{y^2 + y*14 + 45} = \frac{2y}{(y + 5) (9 + y)}
-7,987
\frac{18 - i*4}{-3 - 5*i}*\frac{1}{-3 + i*5}*(5*i - 3) = \frac{1}{-5*i - 3}*(-4*i + 18)
910
(1 + \cos\left(q*2\right))/2 = \cos^2(q)
-22,128
\frac17 \cdot 6 = \frac{30}{35}
31,739
n \cdot 2 = -\left(\sqrt{-n \cdot 2}\right)^2
28,562
g \cdot l \cdot (D \cup X) = D \cup X = g \cdot l \cdot D \cup g \cdot l \cdot X
-3,918
\frac{t^5}{t^2}*66/24 = \frac{t^5*66}{24 t^2}
17,091
\tan(270 + 2 \cdot \theta) = \tan(90 \cdot 4 - -2 \cdot \theta + 90)
24,746
d_1 + d_2 + c = d_1 + d_2 + c
-19,587
7/4 \cdot 5/9 = \frac{1/4 \cdot 7}{9 \cdot \frac{1}{5}}
-6,558
\frac{4 c}{81 + c^2 - 18 c} = \frac{c*4}{(9 (-1) + c) (9 (-1) + c)}
-20,363
4/7*\frac{q + 9}{9 + q} = \frac{q*4 + 36}{63 + q*7}
33,138
Y_j\cdot Y_x = Y_j\cdot Y_x
35,357
\mathbb{E}\left[\dfrac1X\right] = \mathbb{E}\left[X\right]^{-1}
8,323
-77*43 + 23*144 = 1
17,599
B^3 + 1 = \left(B + 1\right) \cdot (1 + B^2 - B)
27,021
\pi^{1/2}/2 = \int_0^\infty e^{y^2}\,dy \gt \int_0^1 e^{y^2}\,dy
5,563
2(3(-1) + l) + l = 3l + 6(-1)
27,093
F \cdot x \cdot y = y \cdot x \cdot F
17,628
\frac{H_n}{H_{1 + 2 \cdot n} - H_n/2} = \frac{1}{-1/2 + H_{2 \cdot n + 1}/(H_n)}
3,299
\tfrac{3}{4} = -\dfrac{1}{4} + 1
47,072
2^9*3*11*31 = 523776
-14,030
\frac{1}{6 + 2}\cdot 56 = 56/8 = 56/8 = 7
-17,743
32 \cdot (-1) + 55 = 23
-9,295
3*3*3*3 p - 2*3*3 = 81 p + 18 \left(-1\right)
11,423
\tan(\tan^{-1}(x) + \tan^{-1}(x^3)) = \dfrac{1}{1 - x^4}\cdot (x + x^3) = \frac{1}{1 - x^2}\cdot x
9,922
(z - a) \cdot \left(z - b\right) = z^2 - (a + b) \cdot z + a \cdot b
-8,269
(-5)\cdot (-9) = 45
-19,473
\frac{\frac17\cdot 8}{3} = 1/(3\cdot \frac{7}{8})
-26,554
10^2 - \left(3\cdot y\right)^2 = (10 + 3\cdot y)\cdot (10 - 3\cdot y)
16,284
\binom{4}{3} \cdot \binom{(-1) + 0 + 4}{0} = 4
-26,617
28 - x * x*7 = 7*(-x * x + 4)
23,810
\tanh\left(x\right) = \sinh(x)/\cosh(x) = \frac{1}{1 + e^{-2 \cdot x}} \cdot \left(1 - e^{-2 \cdot x}\right)
18,704
-2 \cdot (i + 1) = (-2) \cdot (-1) - 2 \cdot (i + 2)
-952
\frac{1}{1} 2 = 2
-7,425
\frac16*4*\frac{3}{5}*2/4 = 1/5
6,210
\sin(\alpha + \tfrac14*\pi) = \cos{\frac{\pi}{4}}*\sin{\alpha} + \sin{\tfrac{1}{4}*\pi}*\cos{\alpha}
-20,621
\frac{1}{-K \cdot 70 + 21 \cdot (-1)} \cdot (K \cdot (-7)) = \frac{1}{3 \cdot (-1) - 10 \cdot K} \cdot (K \cdot (-1)) \cdot \dfrac{1}{7} \cdot 7
41,212
\frac{1}{2^{50}}*100! = 82890330549595738924128375352277498403022775854137923684377543671801902285904897746019649652421639883795821220526555136000000000000000000000000
6,519
|f|/|x| = |\dfrac{f}{x}|
21,439
E((-E(A) + A) \cdot (-E(A) + A)) = E(A^2) - E(A)^2
46,744
2\times 17^1 + 1 = 35 = 5\times 7
23,186
\frac{1}{-x + f} = -\frac{1}{x - f}
1,050
\frac45 \cdot y + \frac{1}{4} \cdot y = \dfrac{21}{20} \cdot y
16,164
A\times f = f\times A
-26,627
16 \cdot x^6 + 81 \cdot (-1) = -9^2 + \left(4 \cdot x^3\right)^2
321
3 + 2*\sqrt{2} + 3 - 2*\sqrt{2} = 6
20,288
7^{369}/350 = 7^{368}/50
32,672
h^{f + g} = h^f*h^g
21,793
\alpha_n+\beta_n=\beta_n+\alpha_n
22,676
\cos(z^3) + (-1) = 1 + (-1) - z^6/2 + \dots = \frac{1}{2} \cdot ((-1) \cdot z^6) + \dots
20,695
\frac{1}{x^2} \times k \times k = \left(k/x\right)^2