Datasets:

Languages:
English
ArXiv:
License:
eli5 / eli5.py
system's picture
system HF Staff
Update files from the datasets library (from 1.4.0)
0645b0e
raw
history blame
18.3 kB
# coding=utf-8
# Copyright 2020 Facebook, Inc. and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""ELI5: Long Form Question Answering dataset"""
from __future__ import absolute_import, division, print_function
import bz2
import io
import json
import lzma
import os
import re
from os.path import isfile
from os.path import join as pjoin
from time import time
import datasets
logger = datasets.logging.get_logger(__name__)
_SUB_REDDITS = ["explainlikeimfive", "askscience", "AskHistorians"]
_REDDIT_URL = "https://files.pushshift.io/reddit/"
# pylint: disable=line-too-long
_URL_REGEX = r"""(?i)\b((?:https?:(?:/{1,3}|[a-z0-9%])|[a-z0-9.\-]+[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)/)(?:[^\s()<>{}\[\]]+|\([^\s()]*?\([^\s()]+\)[^\s()]*?\)|\([^\s]+?\))+(?:\([^\s()]*?\([^\s()]+\)[^\s()]*?\)|\([^\s]+?\)|[^\s`!()\[\]{};:'".,<>?«»“”‘’])|(?:(?<!@)[a-z0-9]+(?:[.\-][a-z0-9]+)*[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)\b/?(?!@)))"""
# pylint: enable=line-too-long
_HTML_PAIRS = [
("&amp;", " & "),
("&quot", ' " '),
("&apos", " ' "),
("&gt;", " > "),
("&lt;", " < "),
]
# removes URLs (kept in separate list)
def _extract_urls_from_text(stp):
url_list = list(set(re.findall(_URL_REGEX, stp)))
for i, url in enumerate(url_list):
stp = stp.replace(url, "_URL_%d_" % (i,))
for a, b in _HTML_PAIRS:
stp = stp.replace(a, b)
return (stp, url_list)
# collects URLs for monthly dumps, has to be robust to file type changes
def _gather_dump_urls(base_url, mode, dl_manager):
from bs4 import BeautifulSoup
page_path = dl_manager.download(_REDDIT_URL + mode)
page_f = open(page_path, encoding="utf-8")
page_content = page_f.read()
page_f.close()
soup = BeautifulSoup(page_content, "lxml")
files = [it for it in soup.find_all(attrs={"class": "file"})]
f_urls = [
tg.find_all(lambda x: x.has_attr("href"))[0]["href"]
for tg in files
if len(tg.find_all(lambda x: x.has_attr("href"))) > 0
]
date_to_url = {}
for url_st in f_urls:
ls = re.findall(r"20[0-9]{2}-[0-9]{2}", url_st)
if len(ls) > 0:
yr, mt = ls[0].split("-")
date_to_url[(int(yr), int(mt))] = base_url + mode + url_st[1:]
return date_to_url
# select valid top-level comments
def _valid_line(dct, mode):
top_level = (mode == "submissions") or (
len(dct["body"].split()) > 2
and not dct["body"].startswith("Your submission has been removed")
and dct["author"] != "AutoModerator"
and dct["parent_id"] == dct["link_id"]
)
res = dct.get("num_comments", 1) > 0 and dct.get("score", 0) and dct.get("score", 0) >= 2 and top_level
return res
def _open_compressed_file(f_name, f_type):
import zstandard as zstd
fh = None
if f_type == "xz":
f = lzma.open(f_name, "rt")
elif f_type == "bz2":
f = bz2.open(f_name, "rt")
elif f_type == "zst":
fh = open(f_name, "rb")
dctx = zstd.ZstdDecompressor()
stream_reader = dctx.stream_reader(fh)
f = io.TextIOWrapper(stream_reader, encoding="utf-8")
else:
raise NotImplementedError
return f, fh
# download a file, extract posts from desired subreddit, then remove from disk
def _download_and_select_lines(dl_manager, f_url, mode, st_time):
# download and pre-process original posts
print("downloading {} {:.2f}".format(f_url, time() - st_time))
f_downloaded_path = dl_manager.download(f_url)
print("decompressing and filtering {} {:.2f}".format(f_url, time() - st_time))
f, fh = _open_compressed_file(f_downloaded_path, f_url.split(".")[-1])
lines = dict([(name, []) for name in _SUB_REDDITS])
for line in f:
line_dct = json.loads(line)
if any([line_dct.get("subreddit", "") == name for name in _SUB_REDDITS]):
lines[line_dct["subreddit"]] += [line_dct]
f.close()
if f_url.split(".")[-1] == "zst":
fh.close()
os.remove(f_downloaded_path)
os.remove(f_downloaded_path + ".json")
os.remove(f_downloaded_path + ".lock")
print("tokenizing and selecting {} {:.2f}".format(f_url, time() - st_time))
processed_items = dict([(name, []) for name in _SUB_REDDITS])
if mode == "submissions":
key_list = ["id", "score", "url", "title", "selftext", "subreddit"]
else:
key_list = ["id", "link_id", "parent_id", "score", "body"]
for name in _SUB_REDDITS:
for line in lines[name]:
if _valid_line(line, mode):
reddit_res = {}
for k in key_list:
if k in ["title", "selftext", "body"]:
reddit_res[k] = _extract_urls_from_text(line[k])
else:
reddit_res[k] = line[k]
processed_items[name] += [reddit_res]
print("Total found {} {} {:.2f}".format(sum([len(ls) for ls in processed_items.values()]), mode, time() - st_time))
return processed_items
# post-process ELI5 questions and de-duplicate answers
def _post_process(reddit_dct, name=""):
# remove the ELI5 at the start of explainlikeimfive questions
start_re = re.compile(r"""\A[\[|\(]?[ ]?eli[5f][ ]?[\]|\)]?[]?[:,]?""", re.IGNORECASE)
if name == "explainlikeimfive":
title, uls = reddit_dct["title"]
title = start_re.sub("", title.strip()).strip()
reddit_dct["title"] = [title, uls]
# dedupe and filter comments
comments = [
c
for i, c in enumerate(reddit_dct["comments"])
if len(c["body"][0].split()) >= 8 and c["id"] not in [x["id"] for x in reddit_dct["comments"][:i]]
]
comments = sorted(comments, key=lambda c: (c["score"], len(c["body"][0].split()), c["id"]), reverse=True)
reddit_dct["comments"] = comments
return reddit_dct
def _download_and_filter_reddit(dl_manager, start_year=2011, start_month=7, end_year=2019, end_month=7):
# collect submissions and comments monthly URLs
date_to_url_submissions = _gather_dump_urls(_REDDIT_URL, "submissions", dl_manager)
date_to_url_comments = _gather_dump_urls(_REDDIT_URL, "comments", dl_manager)
# download, filter, process, remove
st_time = time()
qa_dict = dict([(name, {}) for name in _SUB_REDDITS])
# first download all questions
for year in range(start_year, end_year + 1):
start_mth = start_month if year == start_year else 1
end_mth = end_month if year == end_year else 12
months = range(start_mth, end_mth + 1)
for month in months:
if (year, month) in date_to_url_submissions:
f_url = date_to_url_submissions[(year, month)]
processed_submissions = _download_and_select_lines(dl_manager, f_url, "submissions", st_time)
for name in _SUB_REDDITS:
for dct in processed_submissions[name]:
qa_dict[name][dct["id"]] = dct
else:
print("Could not find submissions dump file for year {:4d} month {:2d}".format(year, month))
# then all answers
for year in range(start_year, end_year + 1):
start_mth = start_month if year == start_year else 1
end_mth = end_month if year == end_year else 12
months = range(start_mth, end_mth + 1)
for month in months:
if (year, month) in date_to_url_comments:
f_url = date_to_url_comments[(year, month)]
processed_comments = _download_and_select_lines(dl_manager, f_url, "comments", st_time)
# merge submissions and comments
for name in _SUB_REDDITS:
merged_comments = 0
for dct in processed_comments[name]:
did = dct["parent_id"].split("_")[-1]
if did in qa_dict[name]:
merged_comments += 1
qa_dict[name][did]["comments"] = qa_dict[name][did].get("comments", []) + [dct]
else:
print("Could not find comments dump file for year {:4d} month {:2d}".format(year, month))
# then post-process
res = {}
for name in _SUB_REDDITS:
qa_dct_list = [(k, _post_process(rdct, name)) for k, rdct in qa_dict[name].items() if "comments" in rdct]
qa_dct_list = [x for x in qa_dct_list if len(x[1]["comments"]) > 0 and name in x[1]["url"]]
res[name] = dict(qa_dct_list[:])
return res
_DESCRIPTION = """\
Explain Like I'm 5 long form QA dataset
"""
_CITATION = """\
@inproceedings{DBLP:conf/acl/FanJPGWA19,
author = {Angela Fan and
Yacine Jernite and
Ethan Perez and
David Grangier and
Jason Weston and
Michael Auli},
editor = {Anna Korhonen and
David R. Traum and
Lluis Marquez},
title = {{ELI5:} Long Form Question Answering},
booktitle = {Proceedings of the 57th Conference of the Association for Computational
Linguistics, {ACL} 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers},
pages = {3558--3567},
publisher = {Association for Computational Linguistics},
year = {2019},
url = {https://doi.org/10.18653/v1/p19-1346},
doi = {10.18653/v1/p19-1346},
}
"""
class Eli5Config(datasets.BuilderConfig):
"""BuilderConfig for ExplainLikeImFive."""
def __init__(self, **kwargs):
"""BuilderConfig for ExplainLikeImFive.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Eli5Config, self).__init__(**kwargs)
class Eli5(datasets.GeneratorBasedBuilder):
"""ELI5: Explain Like I'm Five long form question answering dataset."""
BUILDER_CONFIG_CLASS = Eli5Config
_DATA_SPLIT_URL = "https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/eli5/reddit_data_split.json"
BUILDER_CONFIGS = [
Eli5Config(name="LFQA_reddit", version=datasets.Version("1.0.0"), description="long from QA subreddits"),
]
test_dummy_data = False
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"q_id": datasets.Value("string"),
"title": datasets.Value("string"),
"selftext": datasets.Value("string"),
"document": datasets.Value("string"),
"subreddit": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"a_id": datasets.Value("string"),
"text": datasets.Value("string"),
"score": datasets.Value("int32"),
}
),
"title_urls": datasets.features.Sequence(datasets.Value("string")),
"selftext_urls": datasets.features.Sequence(datasets.Value("string")),
"answers_urls": datasets.features.Sequence(datasets.Value("string")),
}
),
supervised_keys=None,
homepage="https://facebookresearch.github.io/ELI5/explore.html",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
qa_data_file = pjoin(
self._cache_dir_root, self._relative_data_dir(with_version=False), "reddit_downloaded_qa_lists.json"
)
if isfile(qa_data_file):
logger.info("loading pre-computed QA list")
self.filtered_reddit = json.load(open(qa_data_file))
else:
self.filtered_reddit = _download_and_filter_reddit(
dl_manager, start_year=2011, start_month=7, end_year=2019, end_month=7
)
logger.info("saving pre-computed QA list")
json.dump(self.filtered_reddit, open(qa_data_file, "w"))
# download data splits from AWS
fpath_splits = dl_manager.download(self._DATA_SPLIT_URL)
self.data_split = json.load(open(fpath_splits))
return [
datasets.SplitGenerator(
name=datasets.Split("train_eli5"),
gen_kwargs={"split": "train", "subreddit_name": "explainlikeimfive"},
),
datasets.SplitGenerator(
name=datasets.Split("validation_eli5"),
gen_kwargs={"split": "validation", "subreddit_name": "explainlikeimfive"},
),
datasets.SplitGenerator(
name=datasets.Split("test_eli5"),
gen_kwargs={"split": "test", "subreddit_name": "explainlikeimfive"},
),
datasets.SplitGenerator(
name=datasets.Split("train_asks"),
gen_kwargs={"split": "train", "subreddit_name": "askscience"},
),
datasets.SplitGenerator(
name=datasets.Split("validation_asks"),
gen_kwargs={"split": "validation", "subreddit_name": "askscience"},
),
datasets.SplitGenerator(
name=datasets.Split("test_asks"),
gen_kwargs={"split": "test", "subreddit_name": "askscience"},
),
datasets.SplitGenerator(
name=datasets.Split("train_askh"),
gen_kwargs={"split": "train", "subreddit_name": "AskHistorians"},
),
datasets.SplitGenerator(
name=datasets.Split("validation_askh"),
gen_kwargs={"split": "validation", "subreddit_name": "AskHistorians"},
),
datasets.SplitGenerator(
name=datasets.Split("test_askh"),
gen_kwargs={"split": "test", "subreddit_name": "AskHistorians"},
),
]
def _generate_examples(self, split, subreddit_name):
logger.info("generating examples from = {}, {} set".format(subreddit_name, split))
if split in self.data_split.get(subreddit_name, []):
id_list = self.data_split[subreddit_name][split]
data = [
self.filtered_reddit[subreddit_name][q_id]
for q_id in id_list
if q_id in self.filtered_reddit[subreddit_name]
]
elif split == "train":
data = [
self.filtered_reddit[subreddit_name][q_id]
for subreddit_name in self.filtered_reddit
for q_id in self.filtered_reddit[subreddit_name]
]
else:
data = []
for example in data:
id_ = example["id"]
title = example["title"][0]
title_urls = example["title"][1]
selftext = example["selftext"][0]
selftext_urls = example["selftext"][1]
answer_scores = [ans["score"] for ans in example["comments"]]
answer_ids = [ans["id"] for ans in example["comments"]]
# flatten list of URL mappings
url_maps = [(ul, i, j) for i, ans in enumerate(example["comments"]) for j, ul in enumerate(ans["body"][1])]
answers_urls = [ul for ul, _, _ in url_maps]
map_url_indices = dict([((i, j), k) for k, (_, i, j) in enumerate(url_maps)])
answer_texts = []
for i, ans in enumerate(example["comments"]):
txt = ans["body"][0]
for j, _ in enumerate(ans["body"][1]):
txt = txt.replace("_URL_{}_".format(j), "_URL_{}_".format(map_url_indices[(i, j)]))
answer_texts += [txt.strip()]
yield id_, {
"q_id": id_,
"title": title,
"selftext": selftext,
"document": "",
"subreddit": example.get("subreddit", subreddit_name),
"answers": {"a_id": answer_ids, "text": answer_texts, "score": answer_scores},
"title_urls": title_urls,
"selftext_urls": selftext_urls,
"answers_urls": answers_urls,
}