File size: 8,915 Bytes
217de99
f35912b
 
a849f84
 
 
f35912b
a849f84
 
 
f35912b
a849f84
 
 
 
f7ccb61
a849f84
f35912b
a849f84
f7ccb61
12e1be7
a849f84
 
 
 
 
040b1a0
 
f35912b
 
217de99
 
 
 
 
a849f84
 
f35912b
a849f84
217de99
 
a849f84
 
217de99
f7ccb61
a849f84
 
 
be7e99c
a849f84
 
be7e99c
a849f84
be7e99c
f35912b
a849f84
 
be7e99c
a849f84
be7e99c
 
a849f84
be7e99c
 
a679392
be7e99c
a849f84
be7e99c
 
 
a679392
 
 
 
 
 
 
 
 
 
 
a849f84
 
 
f7ccb61
a849f84
f7ccb61
f35912b
 
a849f84
 
 
 
 
 
a679392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217de99
 
 
a849f84
217de99
 
 
be7e99c
a849f84
 
 
 
 
 
 
 
 
 
c2827c5
a849f84
 
 
 
f35912b
be7e99c
a849f84
be7e99c
a849f84
be7e99c
f7ccb61
a849f84
be7e99c
408407a
f7ccb61
f35912b
a849f84
806a21e
f35912b
a849f84
 
f7ccb61
 
a849f84
a679392
a849f84
 
806a21e
f35912b
f7ccb61
a849f84
 
f35912b
a849f84
 
a679392
217de99
a849f84
 
 
a679392
408407a
f7ccb61
 
a679392
f7ccb61
a679392
 
 
 
408407a
a679392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ccb61
 
a679392
f7ccb61
a679392
3484aca
a679392
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import json
import datasets

SUPPORTED_YEARS = ["1774"]
# Add years from 1798 to 1964 to the supported years
SUPPORTED_YEARS = SUPPORTED_YEARS + [str(year) for year in range(1798, 1964)]

def make_year_file_splits():
    """
    Collects a list of available files for each year.

    Returns:
        dict: A dictionary mapping each year to its corresponding file URL.
        list: A list of years.
    """

    base_url = "https://huggingface.co/datasets/dell-research-harvard/AmericanStories/resolve/main/"

    # Make a list of years from 1774 to 1960
    # TODO: can we set up to check the actual files in the repo instead of relying on the offline list?
    year_list = SUPPORTED_YEARS
    data_files = [f"faro_{year}.tar.gz" for year in year_list]
    url_list = [base_url + file for file in data_files]
    
    splits = {year: file for year, file in zip(year_list, url_list)}
    years = year_list

    return splits, years


_CITATION = """\
Coming Soon
"""

_DESCRIPTION = """\
American Stories offers high-quality structured data from historical newspapers suitable for pre-training large language models to enhance the understanding of historical English and world knowledge. It can also be integrated into external databases of retrieval-augmented language models, enabling broader access to historical information, including interpretations of political events and intricate details about people's ancestors. Additionally, the structured article texts facilitate the application of transformer-based methods for popular tasks like detecting reproduced content, significantly improving accuracy compared to traditional OCR methods. American Stories serves as a substantial and valuable dataset for advancing multimodal layout analysis models and other multimodal applications.
"""

_FILE_DICT, _YEARS = make_year_file_splits()


class CustomBuilderConfig(datasets.BuilderConfig):
    """BuilderConfig for AmericanStories dataset with different configurations."""

    def __init__(self, year_list=None, **kwargs):
        """
        BuilderConfig for AmericanStories dataset.

        Args:
            year_list (list): A list of years to include in the dataset.
            **kwargs: Additional keyword arguments forwarded to the superclass.
        """
        super(CustomBuilderConfig, self).__init__(**kwargs)
        self.year_list = year_list

class AmericanStories(datasets.GeneratorBasedBuilder):
    """Dataset builder class for AmericanStories dataset."""

    VERSION = datasets.Version("0.1.0")

    BUILDER_CONFIGS = [
        CustomBuilderConfig(
            name="all_years",
            version=VERSION,
            description="All years in the dataset"
        ),
        CustomBuilderConfig(
            name="subset_years",
            version=VERSION,
            description="Subset of years in the dataset",
            year_list=["1774", "1804"]
        ),
        CustomBuilderConfig(
            name="all_years_content_regions",
            version=VERSION,
            description="All years in the dataset",
        ),
        CustomBuilderConfig(
            name="subset_years_content_regions",
            version=VERSION,
            description="Subset of years in the dataset",
            year_list=["1774", "1804"],
        )
    ]
    
    DEFAULT_CONFIG_NAME = "subset_years"
    BUILDER_CONFIG_CLASS = CustomBuilderConfig

    def _info(self):
        """
        Specifies the DatasetInfo object for the AmericanStories dataset.

        Returns:
            datasets.DatasetInfo: The DatasetInfo object.
        """
        if not self.config.name.endswith("content_regions"):
            features = datasets.Features(
                {
                    "article_id": datasets.Value("string"),
                    "newspaper_name": datasets.Value("string"),
                    "edition": datasets.Value("string"),
                    "date": datasets.Value("string"),
                    "page": datasets.Value("string"),
                    "headline": datasets.Value("string"),
                    "byline": datasets.Value("string"),
                    "article": datasets.Value("string"),
                }
            )
        else:
            features = datasets.Features(
                {
                    "raw_data_string": datasets.Value("string"),
                }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """
        Downloads and extracts the data, and defines the dataset splits.

        Args:
            dl_manager (datasets.DownloadManager): The DownloadManager instance.

        Returns:
            list: A list of SplitGenerator objects.
        """
        if self.config.name == "subset_years":
            print("Only taking a subset of years. Change name to 'all_years' to use all years in the dataset.")
            if not self.config.year_list:
                raise ValueError("Please provide a valid year_list")
            elif not set(self.config.year_list).issubset(set(SUPPORTED_YEARS)):
                raise ValueError(f"Only {SUPPORTED_YEARS} are supported. Please provide a valid year_list")

        urls = _FILE_DICT
        year_list = _YEARS

        # Subset _FILE_DICT and year_list to only include years in config.year_list
        if self.config.year_list:
            urls = {year: urls[year] for year in self.config.year_list if year in SUPPORTED_YEARS}
            year_list = self.config.year_list

        print(urls)
        archive = dl_manager.download(urls)

        # Return a list of splits, where each split corresponds to a year
        return [
            datasets.SplitGenerator(
                name=year,
                gen_kwargs={
                    "files": dl_manager.iter_archive(archive[year]),
                    "year_dir": "/".join(["mnt", "122a7683-fa4b-45dd-9f13-b18cc4f4a187", "ca_rule_based_fa_clean", "faro_" + year]),
                    "split": year,
                    "associated": True if not self.config.name.endswith("content_regions") else False,
                },
            ) for year in year_list
        ]

    def _generate_examples(self, files, year_dir, split, associated):
        """
        Generates examples for the specified year and split.

        Args:
            year_dir (str): The directory path for the year.
            associated (bool): Whether or not the output should be contents associated into an "article" or raw contents.

        Yields:
            tuple: The key-value pair containing the example ID and the example data.
        """
        if associated:
            print('Loading associated')
            for filepath, f in files:
                if filepath.startswith(year_dir):
                    try :
                        data = json.loads(f.read().decode('utf-8'))
                    except:
                        print("Error loading file: " + filepath)
                        continue
                    if "lccn" in data.keys():
                        filepath = filepath.split("/")[-1]
                        scan_id = filepath.split('.')[0]
                        scan_date = filepath.split("_")[0]
                        scan_page = filepath.split("_")[1]
                        scan_edition = filepath.split("_")[-2][8:]
                        newspaper_name = data["lccn"]["title"]
                        full_articles_in_data = data["full articles"]
                        for article in full_articles_in_data:
                            article_id = str(article["full_article_id"]) + "_" + scan_id
                            yield article_id, {
                                "article_id": article_id,
                                "newspaper_name": newspaper_name,
                                "edition": scan_edition,
                                "date": scan_date,
                                "page": scan_page,
                                "headline": article["headline"],
                                "byline": article["byline"],
                                "article": article["article"],
                            }
        else:
            for filepath, f in files:
                if filepath.startswith(year_dir):                    
                    try :
                        data = json.loads(f.read().decode('utf-8'))
                    except:
                        # print("Error loading file: " + filepath)
                        continue
                    ###Convert json to strng
                    data=json.dumps(data)
                    scan_id=filepath.split('.')[0]
                    ##Yield the scan id and the raw data string
                    yield scan_id, {
                        "raw_data_string": str(data)
                    }