AmericanStories / AmericanStories.py
96abhishekarora's picture
finalise docs
c2827c5
raw
history blame
7.03 kB
import json
import tarfile
from datasets import DatasetInfo, DatasetBuilder, DownloadManager, BuilderConfig, SplitGenerator, Split, Version
import datasets
import os
import requests
import re
from tqdm import tqdm
SUPPORTED_YEARS = ["1774"]
# Add years from 1798 to 1964 to the supported years
SUPPORTED_YEARS = SUPPORTED_YEARS + [str(year) for year in range(1798, 1964)]
def make_year_file_splits():
"""
Collects a list of available files for each year.
Returns:
dict: A dictionary mapping each year to its corresponding file URL.
list: A list of years.
"""
base_url = "https://huggingface.co/datasets/dell-research-harvard/AmericanStories/resolve/main/"
# Make a list of years from 1774 to 1960
year_list = [str(year) for year in range(1774, 1960)]
data_files = [f"faro_{year}.tar.gz" for year in year_list]
url_list = [base_url + file for file in data_files]
splits = {year: file for year, file in zip(year_list, url_list)}
years = year_list
return splits, years
_CITATION = """\
Coming Soon
"""
_DESCRIPTION = """\
American Stories offers high-quality structured data from historical newspapers suitable for pre-training large language models to enhance the understanding of historical English and world knowledge. It can also be integrated into external databases of retrieval-augmented language models, enabling broader access to historical information, including interpretations of political events and intricate details about people's ancestors. Additionally, the structured article texts facilitate the application of transformer-based methods for popular tasks like detecting reproduced content, significantly improving accuracy compared to traditional OCR methods. American Stories serves as a substantial and valuable dataset for advancing multimodal layout analysis models and other multimodal applications.
"""
_FILE_DICT, _YEARS = make_year_file_splits()
class CustomBuilderConfig(datasets.BuilderConfig):
"""BuilderConfig for AmericanStories dataset with different configurations."""
def __init__(self, year_list=None, **kwargs):
"""
BuilderConfig for AmericanStories dataset.
Args:
year_list (list): A list of years to include in the dataset.
**kwargs: Additional keyword arguments forwarded to the superclass.
"""
super(CustomBuilderConfig, self).__init__(**kwargs)
self.year_list = year_list
class AmericanStories(datasets.GeneratorBasedBuilder):
"""Dataset builder class for AmericanStories dataset."""
VERSION = datasets.Version("0.1.0")
BUILDER_CONFIGS = [
CustomBuilderConfig(
name="all_years",
version=VERSION,
description="All years in the dataset",
),
CustomBuilderConfig(
name="subset_years",
version=VERSION,
description="Subset of years in the dataset",
year_list=["1774", "1804"],
)
]
DEFAULT_CONFIG_NAME = "subset_years"
def _info(self):
"""
Specifies the DatasetInfo object for the AmericanStories dataset.
Returns:
datasets.DatasetInfo: The DatasetInfo object.
"""
features = datasets.Features(
{
"article_id": datasets.Value("string"),
"newspaper_name": datasets.Value("string"),
"edition": datasets.Value("string"),
"date": datasets.Value("string"),
"page": datasets.Value("string"),
"headline": datasets.Value("string"),
"byline": datasets.Value("string"),
"article": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""
Downloads and extracts the data, and defines the dataset splits.
Args:
dl_manager (datasets.DownloadManager): The DownloadManager instance.
Returns:
list: A list of SplitGenerator objects.
"""
if self.config.name == "subset_years":
print("Only taking a subset of years. Change name to 'all_years' to use all years in the dataset.")
if not self.config.year_list:
raise ValueError("Please provide a valid year_list")
elif not set(self.config.year_list).issubset(set(SUPPORTED_YEARS)):
raise ValueError(f"Only {SUPPORTED_YEARS} are supported. Please provide a valid year_list")
urls = _FILE_DICT
year_list = _YEARS
# Subset _FILE_DICT and year_list to only include years in config.year_list
if self.config.year_list:
urls = {year: urls[year] for year in self.config.year_list}
year_list = self.config.year_list
data_dir = dl_manager.download_and_extract(urls)
# Return a list of splits, where each split corresponds to a year
return [
datasets.SplitGenerator(
name=year,
gen_kwargs={
"year_dir": os.path.join(data_dir[year], "mnt", "122a7683-fa4b-45dd-9f13-b18cc4f4a187", "ca_rule_based_fa_clean", "faro_" + year),
"split": year,
},
) for year in year_list
]
def _generate_examples(self, year_dir, split):
"""
Generates examples for the specified year and split.
Args:
year_dir (str): The directory path for the year.
split (str): The name of the split.
Yields:
tuple: The key-value pair containing the example ID and the example data.
"""
for filepath in os.listdir(year_dir):
with open(os.path.join(year_dir, filepath), encoding="utf-8") as f:
data = json.load(f)
if "lccn" in data.keys():
scan_id = filepath.split('.')[0]
scan_date = filepath.split("_")[0]
scan_page = filepath.split("_")[1]
scan_edition = filepath.split("_")[-2][8:]
newspaper_name = data["lccn"]["title"]
full_articles_in_data = data["full articles"]
for article in full_articles_in_data:
article_id = str(article["full_article_id"]) + "_" + scan_id
yield article_id, {
"article_id": article_id,
"newspaper_name": newspaper_name,
"edition": scan_edition,
"date": scan_date,
"page": scan_page,
"headline": article["headline"],
"byline": article["byline"],
"article": article["article"],
}