Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,814 Bytes
6dcc183
 
 
 
 
 
 
5ca638c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dcc183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61df2d9
6dcc183
 
 
 
 
 
 
e6a41b0
 
6dcc183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6a41b0
 
6dcc183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da5ef84
6dcc183
 
 
 
 
 
e6a41b0
6dcc183
da5ef84
 
6dcc183
da5ef84
 
 
6788267
da5ef84
e6a41b0
 
 
da5ef84
 
6dcc183
da5ef84
 
 
6dcc183
6788267
da5ef84
6dcc183
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: unknown
size_categories: 10K<n<100K
task_categories:
- image-classification
paperswithcode_id: lsun
pretty_name: LSUN (c)
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: image
    dtype: image
  splits:
  - name: train
    num_bytes: 17509356.0
    num_examples: 10000
  download_size: 0
  dataset_size: 17509356.0
---

# Dataset Card for LSUN (c) for OOD Detection

<!-- Provide a quick summary of the dataset. -->



## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->



- **Original Dataset Authors**: Limin Wang, Sheng Guo, Weilin Huang, Yuanjun Xiong, Yu Qiao
- **OOD Split Authors:** Shiyu Liang, Yixuan Li, R. Srikant
- **Shared by:** Eduardo Dadalto
- **License:** unknown

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Original Dataset Paper:** http://arxiv.org/abs/1610.01119v2
- **First OOD Application Paper:** http://arxiv.org/abs/1706.02690v5


### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

This dataset is intended to be used as an ouf-of-distribution dataset for image classification benchmarks.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

This dataset is not annotated.


### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

The goal in curating and sharing this dataset to the HuggingFace Hub is to accelerate research and promote reproducibility in generalized Out-of-Distribution (OOD) detection.

Check the python library [detectors](https://github.com/edadaltocg/detectors) if you are interested in OOD detection.

### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

Please check original paper for details on the dataset.

### Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

Please check original paper for details on the dataset.

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```bibtex
@software{detectors2023,
author = {Eduardo Dadalto},
title = {Detectors: a Python Library for Generalized Out-Of-Distribution Detection},
url = {https://github.com/edadaltocg/detectors},
doi = {https://doi.org/10.5281/zenodo.7883596},
month = {5},
year = {2023}
}

@article{1706.02690v5,
author        = {Shiyu Liang and Yixuan Li and R. Srikant},
title         = {Enhancing The Reliability of Out-of-distribution Image Detection in
  Neural Networks},
year          = {2017},
month         = {6},
note          = {ICLR 2018},
archiveprefix = {arXiv},
url           = {http://arxiv.org/abs/1706.02690v5}
}

@article{1610.01119v2,
author        = {Limin Wang and Sheng Guo and Weilin Huang and Yuanjun Xiong and Yu Qiao},
title         = {Knowledge Guided Disambiguation for Large-Scale Scene Classification
  with Multi-Resolution CNNs},
year          = {2016},
month         = {10},
note          = {To appear in IEEE Transactions on Image Processing. Code and models
  are available at https://github.com/wanglimin/MRCNN-Scene-Recognition},
archiveprefix = {arXiv},
url           = {http://arxiv.org/abs/1610.01119v2}
}
```

## Dataset Card Authors

Eduardo Dadalto

## Dataset Card Contact

https://huggingface.co/edadaltocg