Datasets:
File size: 3,814 Bytes
874cae2 eb15473 874cae2 465d5a1 874cae2 4412140 874cae2 4412140 874cae2 08a2845 874cae2 4412140 874cae2 08a2845 874cae2 08a2845 4412140 08a2845 874cae2 08a2845 874cae2 08a2845 874cae2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: unknown
size_categories: 10K<n<100K
task_categories:
- image-classification
paperswithcode_id: lsun
pretty_name: LSUN (r)
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: image
dtype: image
splits:
- name: train
num_bytes: 27566116.0
num_examples: 10000
download_size: 0
dataset_size: 27566116.0
---
# Dataset Card for LSUN (r) for OOD Detection
<!-- Provide a quick summary of the dataset. -->
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Original Dataset Authors**: Limin Wang, Sheng Guo, Weilin Huang, Yuanjun Xiong, Yu Qiao
- **OOD Split Authors:** Shiyu Liang, Yixuan Li, R. Srikant
- **Shared by:** Eduardo Dadalto
- **License:** unknown
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Original Dataset Paper:** http://arxiv.org/abs/1610.01119v2
- **First OOD Application Paper:** http://arxiv.org/abs/1706.02690v5
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
This dataset is intended to be used as an ouf-of-distribution dataset for image classification benchmarks.
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
This dataset is not annotated.
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
The goal in curating and sharing this dataset to the HuggingFace Hub is to accelerate research and promote reproducibility in generalized Out-of-Distribution (OOD) detection.
Check the python library [detectors](https://github.com/edadaltocg/detectors) if you are interested in OOD detection.
### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
Please check original paper for details on the dataset.
### Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Please check original paper for details on the dataset.
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```bibtex
@software{detectors2023,
author = {Eduardo Dadalto},
title = {Detectors: a Python Library for Generalized Out-Of-Distribution Detection},
url = {https://github.com/edadaltocg/detectors},
doi = {https://doi.org/10.5281/zenodo.7883596},
month = {5},
year = {2023}
}
@article{1706.02690v5,
author = {Shiyu Liang and Yixuan Li and R. Srikant},
title = {Enhancing The Reliability of Out-of-distribution Image Detection in
Neural Networks},
year = {2017},
month = {6},
note = {ICLR 2018},
archiveprefix = {arXiv},
url = {http://arxiv.org/abs/1706.02690v5}
}
@article{1610.01119v2,
author = {Limin Wang and Sheng Guo and Weilin Huang and Yuanjun Xiong and Yu Qiao},
title = {Knowledge Guided Disambiguation for Large-Scale Scene Classification
with Multi-Resolution CNNs},
year = {2016},
month = {10},
note = {To appear in IEEE Transactions on Image Processing. Code and models
are available at https://github.com/wanglimin/MRCNN-Scene-Recognition},
archiveprefix = {arXiv},
url = {http://arxiv.org/abs/1610.01119v2}
}
```
## Dataset Card Authors
Eduardo Dadalto
## Dataset Card Contact
https://huggingface.co/edadaltocg |