Datasets:

Modalities:
Image
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,353 Bytes
39e9b37
 
 
 
 
 
fcea77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39e9b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: unknown
size_categories: n<1K
task_categories:
- image-classification
pretty_name: SSB (easy)
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: image
    dtype: image
  splits:
  - name: train
    num_bytes: 41921235.0
    num_examples: 151
  download_size: 0
  dataset_size: 41921235.0
---

# Dataset Card for SSB (easy) for OOD Detection

<!-- Provide a quick summary of the dataset. -->



## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->



- **Original Dataset Authors**: Sagar Vaze, Kai Han, Andrea Vedaldi, Andrew Zisserman
- **OOD Split Authors:** Julian Bitterwolf, Maximilian Müller, Matthias Hein
- **Shared by:** Eduardo Dadalto
- **License:** unknown

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Original Dataset Paper:** http://arxiv.org/abs/2110.06207v2
- **First OOD Application Paper:** http://arxiv.org/abs/2306.00826v1


### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

This dataset is intended to be used as an ouf-of-distribution dataset for image classification benchmarks.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

This dataset is not annotated.


### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

The goal in curating and sharing this dataset to the HuggingFace Hub is to accelerate research and promote reproducibility in generalized Out-of-Distribution (OOD) detection.

Check the python library [detectors](https://github.com/edadaltocg/detectors) if you are interested in OOD detection.

### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

Please check original paper for details on the dataset.

### Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

Please check original paper for details on the dataset.

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```bibtex
@software{detectors2023,
author = {Eduardo Dadalto},
title = {Detectors: a Python Library for Generalized Out-Of-Distribution Detection},
url = {https://github.com/edadaltocg/detectors},
doi = {https://doi.org/10.5281/zenodo.7883596},
month = {5},
year = {2023}
}

@article{2306.00826v1,
author        = {Julian Bitterwolf and Maximilian Müller and Matthias Hein},
title         = {In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation},
year          = {2023},
month         = {6},
note          = {ICML 2023. Datasets, code and evaluation data at
  https://github.com/j-cb/NINCO},
archiveprefix = {arXiv},
url           = {http://arxiv.org/abs/2306.00826v1}
}
```

## Dataset Card Authors

Eduardo Dadalto

## Dataset Card Contact

https://huggingface.co/edadaltocg