Upload ssynth_data.py with huggingface_hub
Browse files- ssynth_data.py +172 -0
ssynth_data.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 for msynth dataset
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
'''
|
15 |
+
Custom dataset-builder for ssynth dataset
|
16 |
+
'''
|
17 |
+
|
18 |
+
import os
|
19 |
+
import datasets
|
20 |
+
import glob
|
21 |
+
import re
|
22 |
+
|
23 |
+
|
24 |
+
logger = datasets.logging.get_logger(__name__)
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@article{kim2024ssynth,
|
28 |
+
title={Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses},
|
29 |
+
author={Kim, Andrea and Saharkhiz, Niloufar and Sizikova, Elena and Lago, Miguel, and Sahiner, Berkman and Delfino, Jana G., and Badano, Aldo},
|
30 |
+
journal={International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)},
|
31 |
+
volume={},
|
32 |
+
pages={},
|
33 |
+
year={2024}
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
S-SYNTH is an open-source, flexible skin simulation framework to rapidly generate synthetic skin models and images using digital rendering of an anatomically inspired multi-layer, multi-component skin and growing lesion model. It allows for generation of highly-detailed 3D skin models and digitally rendered synthetic images of diverse human skin tones, with full control of underlying parameters and the image formation process.
|
40 |
+
Curated by: Andrea Kim, Niloufar Saharkhiz, Elena Sizikova, Miguel Lago, Berkman Sahiner, Jana Delfino, Aldo Badano
|
41 |
+
License: Creative Commons 1.0 Universal License (CC0)
|
42 |
+
"""
|
43 |
+
|
44 |
+
|
45 |
+
_HOMEPAGE = "https://github.com/DIDSR/ssynth-release?tab=readme-ov-file"
|
46 |
+
|
47 |
+
_REPO = "https://huggingface.co/datasets/didsr/ssynth_data/resolve/main"
|
48 |
+
|
49 |
+
# Initialize an empty list to store the file paths
|
50 |
+
_CROPPED = True
|
51 |
+
|
52 |
+
_URLS = {
|
53 |
+
"synthetic_data": f"{_REPO}/data/synthetic_dataset/output_10k.zip",
|
54 |
+
"read_me": f"{_REPO}/README.md"
|
55 |
+
}
|
56 |
+
|
57 |
+
DATA_DIR = {"all_data": "output_10k"}
|
58 |
+
|
59 |
+
class ssynth_dataConfig(datasets.BuilderConfig):
|
60 |
+
"""ssynth dataset"""
|
61 |
+
def __init__(self, name, **kwargs):
|
62 |
+
super(ssynth_dataConfig, self).__init__(
|
63 |
+
version=datasets.Version("1.0.0"),
|
64 |
+
name=name,
|
65 |
+
description="ssynth_data",
|
66 |
+
**kwargs,
|
67 |
+
)
|
68 |
+
|
69 |
+
class ssynth_data(datasets.GeneratorBasedBuilder):
|
70 |
+
"""ssynth dataset."""
|
71 |
+
|
72 |
+
DEFAULT_WRITER_BATCH_SIZE = 256
|
73 |
+
BUILDER_CONFIGS = [
|
74 |
+
ssynth_dataConfig("output_10k"),
|
75 |
+
]
|
76 |
+
|
77 |
+
def _info(self):
|
78 |
+
if self.config.name == "output_10k":
|
79 |
+
# Define dataset features and keys
|
80 |
+
features = datasets.Features(
|
81 |
+
{
|
82 |
+
"Cropped": datasets.Features({
|
83 |
+
"image": datasets.Value("string"),
|
84 |
+
"mask": datasets.Value("string")
|
85 |
+
}),
|
86 |
+
"Uncropped": datasets.Features({
|
87 |
+
"image": datasets.Value("string"),
|
88 |
+
"mask": datasets.Value("string")
|
89 |
+
})
|
90 |
+
}
|
91 |
+
)
|
92 |
+
|
93 |
+
return datasets.DatasetInfo(
|
94 |
+
description=_DESCRIPTION,
|
95 |
+
features=features,
|
96 |
+
supervised_keys=None,
|
97 |
+
homepage=_HOMEPAGE,
|
98 |
+
citation=_CITATION,
|
99 |
+
)
|
100 |
+
|
101 |
+
def _split_generators(
|
102 |
+
self, dl_manager: datasets.utils.download_manager.DownloadManager):
|
103 |
+
|
104 |
+
if self.config.name == "output_10k":
|
105 |
+
data_dir = dl_manager.download_and_extract(_URLS['synthetic_data'])
|
106 |
+
return [
|
107 |
+
datasets.SplitGenerator(
|
108 |
+
name="output_10k",
|
109 |
+
gen_kwargs={
|
110 |
+
"files": data_dir,
|
111 |
+
"name": "all_data",
|
112 |
+
},
|
113 |
+
),
|
114 |
+
]
|
115 |
+
|
116 |
+
def get_all_file_paths(self, root_directory):
|
117 |
+
file_paths = [] # List to store file paths
|
118 |
+
|
119 |
+
# Walk through the directory and its subdirectories using os.walk
|
120 |
+
for folder, _, files in os.walk(root_directory):
|
121 |
+
for file in files:
|
122 |
+
if file == "cropped_image.png":
|
123 |
+
# Get the full path of the file
|
124 |
+
file_path = os.path.join(folder, file)
|
125 |
+
file_paths.append(file_path)
|
126 |
+
return file_paths
|
127 |
+
|
128 |
+
def get_other_images(self, cropped_image_path, file_name):
|
129 |
+
other_image_paths = []
|
130 |
+
|
131 |
+
# Get the directory containing the cropped_image.png
|
132 |
+
directory = os.path.dirname(cropped_image_path)
|
133 |
+
|
134 |
+
# Walk through the directory to find other image files
|
135 |
+
for file in os.listdir(directory):
|
136 |
+
if file == file_name:
|
137 |
+
# Get the full path of the other image file
|
138 |
+
file_path = os.path.join(directory, file)
|
139 |
+
#other_image_paths.append(file_path)
|
140 |
+
return file_path
|
141 |
+
return None
|
142 |
+
|
143 |
+
|
144 |
+
def _generate_examples(self, files, name):
|
145 |
+
if self.config.name == "output_10k":
|
146 |
+
key = 0
|
147 |
+
data_paths = self.get_all_file_paths(os.path.join(files, DATA_DIR[name]))
|
148 |
+
|
149 |
+
cropped_images = []
|
150 |
+
uncropped_images = []
|
151 |
+
for path in data_paths:
|
152 |
+
res_dic = {}
|
153 |
+
cropped_image = path
|
154 |
+
cropped_mask = self.get_other_images(path,"cropped_mask.png")
|
155 |
+
image = self.get_other_images(path,"image.png")
|
156 |
+
mask = self.get_other_images(path,"mask.png")
|
157 |
+
cropped_data = {
|
158 |
+
"image": cropped_image,
|
159 |
+
"mask": cropped_mask
|
160 |
+
}
|
161 |
+
uncropped_data = {
|
162 |
+
"image": image,
|
163 |
+
"mask": mask
|
164 |
+
}
|
165 |
+
res_dic["Cropped"] = cropped_data
|
166 |
+
res_dic["Uncropped"] = uncropped_data
|
167 |
+
|
168 |
+
yield key, res_dic
|
169 |
+
key += 1
|
170 |
+
|
171 |
+
|
172 |
+
|