patrickvonplaten commited on
Commit
8d2b310
·
1 Parent(s): 72b5024

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ```python
2
+ from PIL import Image
3
+ import torch
4
+ from muse import PipelineMuse, MaskGiTUViT
5
+ from datasets import Dataset, Features
6
+ from datasets import Image as ImageFeature
7
+ from datasets import Value, load_dataset
8
+
9
+ device = "cuda" if torch.cuda.is_available() else "cpu"
10
+
11
+ pipe = PipelineMuse.from_pretrained(
12
+ transformer_path="valhalla/research-run",
13
+ text_encoder_path="openMUSE/clip-vit-large-patch14-text-enc",
14
+ vae_path="openMUSE/vqgan-f16-8192-laion",
15
+ ).to(device)
16
+
17
+ # pipe.transformer = MaskGiTUViT.from_pretrained("valhalla/research-run-finetuned-journeydb", revision="06bcd6ab6580a2ed3275ddfc17f463b8574457da", subfolder="ema_model").to(device)
18
+ pipe.transformer = MaskGiTUViT.from_pretrained("valhalla/muse-research-run", subfolder="ema_model").to(device)
19
+ pipe.tokenizer.pad_token_id = 49407
20
+
21
+ if device == "cuda":
22
+ pipe.transformer.enable_xformers_memory_efficient_attention()
23
+ pipe.text_encoder.to(torch.float16)
24
+ pipe.transformer.to(torch.float16)
25
+
26
+
27
+ import PIL
28
+
29
+
30
+ def main():
31
+ print("Loading dataset...")
32
+ parti_prompts = load_dataset("nateraw/parti-prompts", split="train")
33
+
34
+ print("Loading pipeline...")
35
+ seed = 0
36
+
37
+ device = "cuda"
38
+ torch.manual_seed(0)
39
+
40
+ ckpt_id = "openMUSE/muse-256"
41
+
42
+ scale = 10
43
+
44
+ print("Running inference...")
45
+ main_dict = {}
46
+ for i in range(len(parti_prompts)):
47
+ sample = parti_prompts[i]
48
+ prompt = sample["Prompt"]
49
+
50
+ image = pipe(
51
+ prompt,
52
+ timesteps=16,
53
+ negative_text=None,
54
+ guidance_scale=scale,
55
+ temperature=(2, 0),
56
+ orig_size=(256, 256),
57
+ crop_coords=(0, 0),
58
+ aesthetic_score=6,
59
+ use_fp16=device == "cuda",
60
+ transformer_seq_len=256,
61
+ use_tqdm=False,
62
+ )[0]
63
+
64
+ image = image.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS)
65
+ img_path = f"/home/patrick/muse_images/muse_256_{i}.png"
66
+ image.save(img_path)
67
+ main_dict.update(
68
+ {
69
+ prompt: {
70
+ "img_path": img_path,
71
+ "Category": sample["Category"],
72
+ "Challenge": sample["Challenge"],
73
+ "Note": sample["Note"],
74
+ "model_name": ckpt_id,
75
+ "seed": seed,
76
+ }
77
+ }
78
+ )
79
+
80
+ def generation_fn():
81
+ for prompt in main_dict:
82
+ prompt_entry = main_dict[prompt]
83
+ yield {
84
+ "Prompt": prompt,
85
+ "Category": prompt_entry["Category"],
86
+ "Challenge": prompt_entry["Challenge"],
87
+ "Note": prompt_entry["Note"],
88
+ "images": {"path": prompt_entry["img_path"]},
89
+ "model_name": prompt_entry["model_name"],
90
+ "seed": prompt_entry["seed"],
91
+ }
92
+
93
+ print("Preparing HF dataset...")
94
+ ds = Dataset.from_generator(
95
+ generation_fn,
96
+ features=Features(
97
+ Prompt=Value("string"),
98
+ Category=Value("string"),
99
+ Challenge=Value("string"),
100
+ Note=Value("string"),
101
+ images=ImageFeature(),
102
+ model_name=Value("string"),
103
+ seed=Value("int64"),
104
+ ),
105
+ )
106
+ ds_id = "diffusers-parti-prompts/muse256"
107
+ ds.push_to_hub(ds_id)
108
+
109
+
110
+ if __name__ == "__main__":
111
+ main()
112
+ ```