File size: 3,772 Bytes
b704080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be2721c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: Prompt
    dtype: string
  - name: Category
    dtype: string
  - name: Challenge
    dtype: string
  - name: Note
    dtype: string
  - name: images
    dtype: image
  - name: model_name
    dtype: string
  - name: seed
    dtype: int64
  splits:
  - name: train
    num_bytes: 128701081.568
    num_examples: 1632
  download_size: 127769152
  dataset_size: 128701081.568
---
# Dataset Card for "muse_512"

```py
```py
from PIL import Image  
import torch
from muse import PipelineMuse, MaskGiTUViT
from datasets import Dataset, Features
from datasets import Image as ImageFeature
from datasets import Value, load_dataset

device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = PipelineMuse.from_pretrained(
    transformer_path="valhalla/research-run",
    text_encoder_path="openMUSE/clip-vit-large-patch14-text-enc",
    vae_path="openMUSE/vqgan-f16-8192-laion",
).to(device)

pipe.transformer = MaskGiTUViT.from_pretrained("valhalla/research-run-finetuned-journeydb", revision="06bcd6ab6580a2ed3275ddfc17f463b8574457da", subfolder="ema_model").to(device)
pipe.tokenizer.pad_token_id = 49407

if device == "cuda":
    pipe.transformer.enable_xformers_memory_efficient_attention()
    pipe.text_encoder.to(torch.float16)
    pipe.transformer.to(torch.float16)


import PIL


def main():
    print("Loading dataset...")
    parti_prompts = load_dataset("nateraw/parti-prompts", split="train")

    print("Loading pipeline...")
    seed = 0

    device = "cuda"
    torch.manual_seed(0)

    ckpt_id = "openMUSE/muse-512"

    scale = 10

    print("Running inference...")
    main_dict = {}
    for i in range(len(parti_prompts)):
        sample = parti_prompts[i]
        prompt = sample["Prompt"]

        image = pipe(
            prompt,
            timesteps=16,
            negative_text=None,
            guidance_scale=scale,
            temperature=(2, 0),
            orig_size=(512, 512),
            crop_coords=(0, 0),
            aesthetic_score=6,
            use_fp16=device == "cuda",
            transformer_seq_len=1024,
            use_tqdm=False,
        )[0]

        image = image.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS)
        img_path = f"/home/patrick/muse_images/muse_512_{i}.png"
        image.save(img_path)
        main_dict.update(
            {
                prompt: {
                    "img_path": img_path,
                    "Category": sample["Category"],
                    "Challenge": sample["Challenge"],
                    "Note": sample["Note"],
                    "model_name": ckpt_id,
                    "seed": seed,
                }
            }
        )

    def generation_fn():
        for prompt in main_dict:
            prompt_entry = main_dict[prompt]
            yield {
                "Prompt": prompt,
                "Category": prompt_entry["Category"],
                "Challenge": prompt_entry["Challenge"],
                "Note": prompt_entry["Note"],
                "images": {"path": prompt_entry["img_path"]},
                "model_name": prompt_entry["model_name"],
                "seed": prompt_entry["seed"],
            }

    print("Preparing HF dataset...")
    ds = Dataset.from_generator(
        generation_fn,
        features=Features(
            Prompt=Value("string"),
            Category=Value("string"),
            Challenge=Value("string"),
            Note=Value("string"),
            images=ImageFeature(),
            model_name=Value("string"),
            seed=Value("int64"),
        ),
    )
    ds_id = "diffusers-parti-prompts/muse512"
    ds.push_to_hub(ds_id)


if __name__ == "__main__":
    main()
```