File size: 3,772 Bytes
b704080 be2721c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: Prompt
dtype: string
- name: Category
dtype: string
- name: Challenge
dtype: string
- name: Note
dtype: string
- name: images
dtype: image
- name: model_name
dtype: string
- name: seed
dtype: int64
splits:
- name: train
num_bytes: 128701081.568
num_examples: 1632
download_size: 127769152
dataset_size: 128701081.568
---
# Dataset Card for "muse_512"
```py
```py
from PIL import Image
import torch
from muse import PipelineMuse, MaskGiTUViT
from datasets import Dataset, Features
from datasets import Image as ImageFeature
from datasets import Value, load_dataset
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = PipelineMuse.from_pretrained(
transformer_path="valhalla/research-run",
text_encoder_path="openMUSE/clip-vit-large-patch14-text-enc",
vae_path="openMUSE/vqgan-f16-8192-laion",
).to(device)
pipe.transformer = MaskGiTUViT.from_pretrained("valhalla/research-run-finetuned-journeydb", revision="06bcd6ab6580a2ed3275ddfc17f463b8574457da", subfolder="ema_model").to(device)
pipe.tokenizer.pad_token_id = 49407
if device == "cuda":
pipe.transformer.enable_xformers_memory_efficient_attention()
pipe.text_encoder.to(torch.float16)
pipe.transformer.to(torch.float16)
import PIL
def main():
print("Loading dataset...")
parti_prompts = load_dataset("nateraw/parti-prompts", split="train")
print("Loading pipeline...")
seed = 0
device = "cuda"
torch.manual_seed(0)
ckpt_id = "openMUSE/muse-512"
scale = 10
print("Running inference...")
main_dict = {}
for i in range(len(parti_prompts)):
sample = parti_prompts[i]
prompt = sample["Prompt"]
image = pipe(
prompt,
timesteps=16,
negative_text=None,
guidance_scale=scale,
temperature=(2, 0),
orig_size=(512, 512),
crop_coords=(0, 0),
aesthetic_score=6,
use_fp16=device == "cuda",
transformer_seq_len=1024,
use_tqdm=False,
)[0]
image = image.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS)
img_path = f"/home/patrick/muse_images/muse_512_{i}.png"
image.save(img_path)
main_dict.update(
{
prompt: {
"img_path": img_path,
"Category": sample["Category"],
"Challenge": sample["Challenge"],
"Note": sample["Note"],
"model_name": ckpt_id,
"seed": seed,
}
}
)
def generation_fn():
for prompt in main_dict:
prompt_entry = main_dict[prompt]
yield {
"Prompt": prompt,
"Category": prompt_entry["Category"],
"Challenge": prompt_entry["Challenge"],
"Note": prompt_entry["Note"],
"images": {"path": prompt_entry["img_path"]},
"model_name": prompt_entry["model_name"],
"seed": prompt_entry["seed"],
}
print("Preparing HF dataset...")
ds = Dataset.from_generator(
generation_fn,
features=Features(
Prompt=Value("string"),
Category=Value("string"),
Challenge=Value("string"),
Note=Value("string"),
images=ImageFeature(),
model_name=Value("string"),
seed=Value("int64"),
),
)
ds_id = "diffusers-parti-prompts/muse512"
ds.push_to_hub(ds_id)
if __name__ == "__main__":
main()
``` |