patrickvonplaten
commited on
Commit
·
4f228d6
1
Parent(s):
e10f4f1
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```py
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from muse import PipelineMuse, MaskGiTUViT
|
5 |
+
from datasets import Dataset, Features
|
6 |
+
from datasets import Image as ImageFeature
|
7 |
+
from datasets import Value, load_dataset
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
pipe = PipelineMuse.from_pretrained(
|
12 |
+
transformer_path="valhalla/research-run",
|
13 |
+
text_encoder_path="openMUSE/clip-vit-large-patch14-text-enc",
|
14 |
+
vae_path="openMUSE/vqgan-f16-8192-laion",
|
15 |
+
).to(device)
|
16 |
+
|
17 |
+
pipe.transformer = MaskGiTUViT.from_pretrained("valhalla/research-run-finetuned-journeydb", revision="06bcd6ab6580a2ed3275ddfc17f463b8574457da", subfolder="ema_model").to(device)
|
18 |
+
pipe.tokenizer.pad_token_id = 49407
|
19 |
+
|
20 |
+
if device == "cuda":
|
21 |
+
pipe.transformer.enable_xformers_memory_efficient_attention()
|
22 |
+
pipe.text_encoder.to(torch.float16)
|
23 |
+
pipe.transformer.to(torch.float16)
|
24 |
+
|
25 |
+
|
26 |
+
import PIL
|
27 |
+
|
28 |
+
|
29 |
+
def main():
|
30 |
+
print("Loading dataset...")
|
31 |
+
parti_prompts = load_dataset("nateraw/parti-prompts", split="train")
|
32 |
+
|
33 |
+
print("Loading pipeline...")
|
34 |
+
seed = 0
|
35 |
+
|
36 |
+
device = "cuda"
|
37 |
+
torch.manual_seed(0)
|
38 |
+
|
39 |
+
ckpt_id = "openMUSE/muse-512"
|
40 |
+
|
41 |
+
scale = 10
|
42 |
+
|
43 |
+
print("Running inference...")
|
44 |
+
main_dict = {}
|
45 |
+
for i in range(len(parti_prompts)):
|
46 |
+
sample = parti_prompts[i]
|
47 |
+
prompt = sample["Prompt"]
|
48 |
+
|
49 |
+
image = pipe(
|
50 |
+
prompt,
|
51 |
+
timesteps=16,
|
52 |
+
negative_text=None,
|
53 |
+
guidance_scale=scale,
|
54 |
+
temperature=(2, 0),
|
55 |
+
orig_size=(512, 512),
|
56 |
+
crop_coords=(0, 0),
|
57 |
+
aesthetic_score=6,
|
58 |
+
use_fp16=device == "cuda",
|
59 |
+
transformer_seq_len=1024,
|
60 |
+
use_tqdm=False,
|
61 |
+
)[0]
|
62 |
+
|
63 |
+
image = image.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS)
|
64 |
+
img_path = f"/home/patrick/muse_images/muse_512_{i}.png"
|
65 |
+
image.save(img_path)
|
66 |
+
main_dict.update(
|
67 |
+
{
|
68 |
+
prompt: {
|
69 |
+
"img_path": img_path,
|
70 |
+
"Category": sample["Category"],
|
71 |
+
"Challenge": sample["Challenge"],
|
72 |
+
"Note": sample["Note"],
|
73 |
+
"model_name": ckpt_id,
|
74 |
+
"seed": seed,
|
75 |
+
}
|
76 |
+
}
|
77 |
+
)
|
78 |
+
|
79 |
+
def generation_fn():
|
80 |
+
for prompt in main_dict:
|
81 |
+
prompt_entry = main_dict[prompt]
|
82 |
+
yield {
|
83 |
+
"Prompt": prompt,
|
84 |
+
"Category": prompt_entry["Category"],
|
85 |
+
"Challenge": prompt_entry["Challenge"],
|
86 |
+
"Note": prompt_entry["Note"],
|
87 |
+
"images": {"path": prompt_entry["img_path"]},
|
88 |
+
"model_name": prompt_entry["model_name"],
|
89 |
+
"seed": prompt_entry["seed"],
|
90 |
+
}
|
91 |
+
|
92 |
+
print("Preparing HF dataset...")
|
93 |
+
ds = Dataset.from_generator(
|
94 |
+
generation_fn,
|
95 |
+
features=Features(
|
96 |
+
Prompt=Value("string"),
|
97 |
+
Category=Value("string"),
|
98 |
+
Challenge=Value("string"),
|
99 |
+
Note=Value("string"),
|
100 |
+
images=ImageFeature(),
|
101 |
+
model_name=Value("string"),
|
102 |
+
seed=Value("int64"),
|
103 |
+
),
|
104 |
+
)
|
105 |
+
ds_id = "diffusers-parti-prompts/muse512"
|
106 |
+
ds.push_to_hub(ds_id)
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
main()
|
111 |
+
```
|