diff --git "a/main/lpw_stable_diffusion_xl.py" "b/main/lpw_stable_diffusion_xl.py"
new file mode 100644--- /dev/null
+++ "b/main/lpw_stable_diffusion_xl.py"
@@ -0,0 +1,2212 @@
+## ----------------------------------------------------------
+# A SDXL pipeline can take unlimited weighted prompt
+#
+# Author: Andrew Zhu
+# Github: https://github.com/xhinker
+# Medium: https://medium.com/@xhinker
+## -----------------------------------------------------------
+
+import inspect
+import os
+from typing import Any, Callable, Dict, List, Optional, Tuple, Union
+
+import torch
+from PIL import Image
+from transformers import (
+    CLIPImageProcessor,
+    CLIPTextModel,
+    CLIPTextModelWithProjection,
+    CLIPTokenizer,
+    CLIPVisionModelWithProjection,
+)
+
+from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
+from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
+from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
+from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
+from diffusers.models.attention_processor import (
+    AttnProcessor2_0,
+    LoRAAttnProcessor2_0,
+    LoRAXFormersAttnProcessor,
+    XFormersAttnProcessor,
+)
+from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
+from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
+from diffusers.schedulers import KarrasDiffusionSchedulers
+from diffusers.utils import (
+    deprecate,
+    is_accelerate_available,
+    is_accelerate_version,
+    is_invisible_watermark_available,
+    logging,
+    replace_example_docstring,
+)
+from diffusers.utils.torch_utils import randn_tensor
+
+
+if is_invisible_watermark_available():
+    from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
+
+
+def parse_prompt_attention(text):
+    """
+    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
+    Accepted tokens are:
+      (abc) - increases attention to abc by a multiplier of 1.1
+      (abc:3.12) - increases attention to abc by a multiplier of 3.12
+      [abc] - decreases attention to abc by a multiplier of 1.1
+      \\( - literal character '('
+      \\[ - literal character '['
+      \\) - literal character ')'
+      \\] - literal character ']'
+      \\ - literal character '\'
+      anything else - just text
+
+    >>> parse_prompt_attention('normal text')
+    [['normal text', 1.0]]
+    >>> parse_prompt_attention('an (important) word')
+    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
+    >>> parse_prompt_attention('(unbalanced')
+    [['unbalanced', 1.1]]
+    >>> parse_prompt_attention('\\(literal\\]')
+    [['(literal]', 1.0]]
+    >>> parse_prompt_attention('(unnecessary)(parens)')
+    [['unnecessaryparens', 1.1]]
+    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
+    [['a ', 1.0],
+     ['house', 1.5730000000000004],
+     [' ', 1.1],
+     ['on', 1.0],
+     [' a ', 1.1],
+     ['hill', 0.55],
+     [', sun, ', 1.1],
+     ['sky', 1.4641000000000006],
+     ['.', 1.1]]
+    """
+    import re
+
+    re_attention = re.compile(
+        r"""
+            \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
+            \)|]|[^\\()\[\]:]+|:
+        """,
+        re.X,
+    )
+
+    re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
+
+    res = []
+    round_brackets = []
+    square_brackets = []
+
+    round_bracket_multiplier = 1.1
+    square_bracket_multiplier = 1 / 1.1
+
+    def multiply_range(start_position, multiplier):
+        for p in range(start_position, len(res)):
+            res[p][1] *= multiplier
+
+    for m in re_attention.finditer(text):
+        text = m.group(0)
+        weight = m.group(1)
+
+        if text.startswith("\\"):
+            res.append([text[1:], 1.0])
+        elif text == "(":
+            round_brackets.append(len(res))
+        elif text == "[":
+            square_brackets.append(len(res))
+        elif weight is not None and len(round_brackets) > 0:
+            multiply_range(round_brackets.pop(), float(weight))
+        elif text == ")" and len(round_brackets) > 0:
+            multiply_range(round_brackets.pop(), round_bracket_multiplier)
+        elif text == "]" and len(square_brackets) > 0:
+            multiply_range(square_brackets.pop(), square_bracket_multiplier)
+        else:
+            parts = re.split(re_break, text)
+            for i, part in enumerate(parts):
+                if i > 0:
+                    res.append(["BREAK", -1])
+                res.append([part, 1.0])
+
+    for pos in round_brackets:
+        multiply_range(pos, round_bracket_multiplier)
+
+    for pos in square_brackets:
+        multiply_range(pos, square_bracket_multiplier)
+
+    if len(res) == 0:
+        res = [["", 1.0]]
+
+    # merge runs of identical weights
+    i = 0
+    while i + 1 < len(res):
+        if res[i][1] == res[i + 1][1]:
+            res[i][0] += res[i + 1][0]
+            res.pop(i + 1)
+        else:
+            i += 1
+
+    return res
+
+
+def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str):
+    """
+    Get prompt token ids and weights, this function works for both prompt and negative prompt
+
+    Args:
+        pipe (CLIPTokenizer)
+            A CLIPTokenizer
+        prompt (str)
+            A prompt string with weights
+
+    Returns:
+        text_tokens (list)
+            A list contains token ids
+        text_weight (list)
+            A list contains the correspondent weight of token ids
+
+    Example:
+        import torch
+        from transformers import CLIPTokenizer
+
+        clip_tokenizer = CLIPTokenizer.from_pretrained(
+            "stablediffusionapi/deliberate-v2"
+            , subfolder = "tokenizer"
+            , dtype = torch.float16
+        )
+
+        token_id_list, token_weight_list = get_prompts_tokens_with_weights(
+            clip_tokenizer = clip_tokenizer
+            ,prompt = "a (red:1.5) cat"*70
+        )
+    """
+    texts_and_weights = parse_prompt_attention(prompt)
+    text_tokens, text_weights = [], []
+    for word, weight in texts_and_weights:
+        # tokenize and discard the starting and the ending token
+        token = clip_tokenizer(word, truncation=False).input_ids[1:-1]  # so that tokenize whatever length prompt
+        # the returned token is a 1d list: [320, 1125, 539, 320]
+
+        # merge the new tokens to the all tokens holder: text_tokens
+        text_tokens = [*text_tokens, *token]
+
+        # each token chunk will come with one weight, like ['red cat', 2.0]
+        # need to expand weight for each token.
+        chunk_weights = [weight] * len(token)
+
+        # append the weight back to the weight holder: text_weights
+        text_weights = [*text_weights, *chunk_weights]
+    return text_tokens, text_weights
+
+
+def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False):
+    """
+    Produce tokens and weights in groups and pad the missing tokens
+
+    Args:
+        token_ids (list)
+            The token ids from tokenizer
+        weights (list)
+            The weights list from function get_prompts_tokens_with_weights
+        pad_last_block (bool)
+            Control if fill the last token list to 75 tokens with eos
+    Returns:
+        new_token_ids (2d list)
+        new_weights (2d list)
+
+    Example:
+        token_groups,weight_groups = group_tokens_and_weights(
+            token_ids = token_id_list
+            , weights = token_weight_list
+        )
+    """
+    bos, eos = 49406, 49407
+
+    # this will be a 2d list
+    new_token_ids = []
+    new_weights = []
+    while len(token_ids) >= 75:
+        # get the first 75 tokens
+        head_75_tokens = [token_ids.pop(0) for _ in range(75)]
+        head_75_weights = [weights.pop(0) for _ in range(75)]
+
+        # extract token ids and weights
+        temp_77_token_ids = [bos] + head_75_tokens + [eos]
+        temp_77_weights = [1.0] + head_75_weights + [1.0]
+
+        # add 77 token and weights chunk to the holder list
+        new_token_ids.append(temp_77_token_ids)
+        new_weights.append(temp_77_weights)
+
+    # padding the left
+    if len(token_ids) > 0:
+        padding_len = 75 - len(token_ids) if pad_last_block else 0
+
+        temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
+        new_token_ids.append(temp_77_token_ids)
+
+        temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
+        new_weights.append(temp_77_weights)
+
+    return new_token_ids, new_weights
+
+
+def get_weighted_text_embeddings_sdxl(
+    pipe: StableDiffusionXLPipeline,
+    prompt: str = "",
+    prompt_2: str = None,
+    neg_prompt: str = "",
+    neg_prompt_2: str = None,
+    num_images_per_prompt: int = 1,
+    device: Optional[torch.device] = None,
+    clip_skip: Optional[int] = None,
+):
+    """
+    This function can process long prompt with weights, no length limitation
+    for Stable Diffusion XL
+
+    Args:
+        pipe (StableDiffusionPipeline)
+        prompt (str)
+        prompt_2 (str)
+        neg_prompt (str)
+        neg_prompt_2 (str)
+        num_images_per_prompt (int)
+        device (torch.device)
+        clip_skip (int)
+    Returns:
+        prompt_embeds (torch.Tensor)
+        neg_prompt_embeds (torch.Tensor)
+    """
+    device = device or pipe._execution_device
+
+    if prompt_2:
+        prompt = f"{prompt} {prompt_2}"
+
+    if neg_prompt_2:
+        neg_prompt = f"{neg_prompt} {neg_prompt_2}"
+
+    prompt_t1 = prompt_t2 = prompt
+    neg_prompt_t1 = neg_prompt_t2 = neg_prompt
+
+    if isinstance(pipe, TextualInversionLoaderMixin):
+        prompt_t1 = pipe.maybe_convert_prompt(prompt_t1, pipe.tokenizer)
+        neg_prompt_t1 = pipe.maybe_convert_prompt(neg_prompt_t1, pipe.tokenizer)
+        prompt_t2 = pipe.maybe_convert_prompt(prompt_t2, pipe.tokenizer_2)
+        neg_prompt_t2 = pipe.maybe_convert_prompt(neg_prompt_t2, pipe.tokenizer_2)
+
+    eos = pipe.tokenizer.eos_token_id
+
+    # tokenizer 1
+    prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt_t1)
+    neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt_t1)
+
+    # tokenizer 2
+    prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt_t2)
+    neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt_t2)
+
+    # padding the shorter one for prompt set 1
+    prompt_token_len = len(prompt_tokens)
+    neg_prompt_token_len = len(neg_prompt_tokens)
+
+    if prompt_token_len > neg_prompt_token_len:
+        # padding the neg_prompt with eos token
+        neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
+        neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
+    else:
+        # padding the prompt
+        prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
+        prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
+
+    # padding the shorter one for token set 2
+    prompt_token_len_2 = len(prompt_tokens_2)
+    neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
+
+    if prompt_token_len_2 > neg_prompt_token_len_2:
+        # padding the neg_prompt with eos token
+        neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
+        neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
+    else:
+        # padding the prompt
+        prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
+        prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
+
+    embeds = []
+    neg_embeds = []
+
+    prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())
+
+    neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights(
+        neg_prompt_tokens.copy(), neg_prompt_weights.copy()
+    )
+
+    prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights(
+        prompt_tokens_2.copy(), prompt_weights_2.copy()
+    )
+
+    neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights(
+        neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
+    )
+
+    # get prompt embeddings one by one is not working.
+    for i in range(len(prompt_token_groups)):
+        # get positive prompt embeddings with weights
+        token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=device)
+        weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=device)
+
+        token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=device)
+
+        # use first text encoder
+        prompt_embeds_1 = pipe.text_encoder(token_tensor.to(device), output_hidden_states=True)
+
+        # use second text encoder
+        prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(device), output_hidden_states=True)
+        pooled_prompt_embeds = prompt_embeds_2[0]
+
+        if clip_skip is None:
+            prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
+            prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
+        else:
+            # "2" because SDXL always indexes from the penultimate layer.
+            prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-(clip_skip + 2)]
+            prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-(clip_skip + 2)]
+
+        prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
+        token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
+
+        for j in range(len(weight_tensor)):
+            if weight_tensor[j] != 1.0:
+                token_embedding[j] = (
+                    token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
+                )
+
+        token_embedding = token_embedding.unsqueeze(0)
+        embeds.append(token_embedding)
+
+        # get negative prompt embeddings with weights
+        neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=device)
+        neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=device)
+        neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=device)
+
+        # use first text encoder
+        neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(device), output_hidden_states=True)
+        neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
+
+        # use second text encoder
+        neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(device), output_hidden_states=True)
+        neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
+        negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
+
+        neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
+        neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
+
+        for z in range(len(neg_weight_tensor)):
+            if neg_weight_tensor[z] != 1.0:
+                neg_token_embedding[z] = (
+                    neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
+                )
+
+        neg_token_embedding = neg_token_embedding.unsqueeze(0)
+        neg_embeds.append(neg_token_embedding)
+
+    prompt_embeds = torch.cat(embeds, dim=1)
+    negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
+
+    bs_embed, seq_len, _ = prompt_embeds.shape
+    # duplicate text embeddings for each generation per prompt, using mps friendly method
+    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
+
+    seq_len = negative_prompt_embeds.shape[1]
+    negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
+    negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
+
+    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view(
+        bs_embed * num_images_per_prompt, -1
+    )
+    negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view(
+        bs_embed * num_images_per_prompt, -1
+    )
+
+    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
+
+
+# -------------------------------------------------------------------------------------------------------------------------------
+# reuse the backbone code from StableDiffusionXLPipeline
+# -------------------------------------------------------------------------------------------------------------------------------
+
+logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
+
+EXAMPLE_DOC_STRING = """
+    Examples:
+        ```py
+        from diffusers import DiffusionPipeline
+        import torch
+
+        pipe = DiffusionPipeline.from_pretrained(
+            "stabilityai/stable-diffusion-xl-base-1.0"
+            , torch_dtype       = torch.float16
+            , use_safetensors   = True
+            , variant           = "fp16"
+            , custom_pipeline   = "lpw_stable_diffusion_xl",
+        )
+
+        prompt = "a white cat running on the grass"*20
+        prompt2 = "play a football"*20
+        prompt = f"{prompt},{prompt2}"
+        neg_prompt = "blur, low quality"
+
+        pipe.to("cuda")
+        images = pipe(
+            prompt                  = prompt
+            , negative_prompt       = neg_prompt
+        ).images[0]
+
+        pipe.to("cpu")
+        torch.cuda.empty_cache()
+        images
+        ```
+"""
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
+def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
+    """
+    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
+    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
+    """
+    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
+    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
+    # rescale the results from guidance (fixes overexposure)
+    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
+    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
+    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
+    return noise_cfg
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
+def retrieve_latents(
+    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
+):
+    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
+        return encoder_output.latent_dist.sample(generator)
+    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
+        return encoder_output.latent_dist.mode()
+    elif hasattr(encoder_output, "latents"):
+        return encoder_output.latents
+    else:
+        raise AttributeError("Could not access latents of provided encoder_output")
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
+def retrieve_timesteps(
+    scheduler,
+    num_inference_steps: Optional[int] = None,
+    device: Optional[Union[str, torch.device]] = None,
+    timesteps: Optional[List[int]] = None,
+    **kwargs,
+):
+    """
+    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
+    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
+
+    Args:
+        scheduler (`SchedulerMixin`):
+            The scheduler to get timesteps from.
+        num_inference_steps (`int`):
+            The number of diffusion steps used when generating samples with a pre-trained model. If used,
+            `timesteps` must be `None`.
+        device (`str` or `torch.device`, *optional*):
+            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
+        timesteps (`List[int]`, *optional*):
+                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
+                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
+                must be `None`.
+
+    Returns:
+        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
+        second element is the number of inference steps.
+    """
+    if timesteps is not None:
+        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
+        if not accepts_timesteps:
+            raise ValueError(
+                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
+                f" timestep schedules. Please check whether you are using the correct scheduler."
+            )
+        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
+        timesteps = scheduler.timesteps
+        num_inference_steps = len(timesteps)
+    else:
+        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
+        timesteps = scheduler.timesteps
+    return timesteps, num_inference_steps
+
+
+class SDXLLongPromptWeightingPipeline(
+    DiffusionPipeline,
+    StableDiffusionMixin,
+    FromSingleFileMixin,
+    IPAdapterMixin,
+    LoraLoaderMixin,
+    TextualInversionLoaderMixin,
+):
+    r"""
+    Pipeline for text-to-image generation using Stable Diffusion XL.
+
+    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
+    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
+
+    The pipeline also inherits the following loading methods:
+        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
+        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
+        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
+        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
+        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
+
+    Args:
+        vae ([`AutoencoderKL`]):
+            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+        text_encoder ([`CLIPTextModel`]):
+            Frozen text-encoder. Stable Diffusion XL uses the text portion of
+            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+        text_encoder_2 ([` CLIPTextModelWithProjection`]):
+            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
+            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
+            specifically the
+            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
+            variant.
+        tokenizer (`CLIPTokenizer`):
+            Tokenizer of class
+            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+        tokenizer_2 (`CLIPTokenizer`):
+            Second Tokenizer of class
+            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+        unet ([`UNet2DConditionModel`]):
+            Conditional U-Net architecture to denoise the encoded image latents.
+        scheduler ([`SchedulerMixin`]):
+            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+        feature_extractor ([`~transformers.CLIPImageProcessor`]):
+            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
+    """
+
+    model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
+    _optional_components = [
+        "tokenizer",
+        "tokenizer_2",
+        "text_encoder",
+        "text_encoder_2",
+        "image_encoder",
+        "feature_extractor",
+    ]
+    _callback_tensor_inputs = [
+        "latents",
+        "prompt_embeds",
+        "negative_prompt_embeds",
+        "add_text_embeds",
+        "add_time_ids",
+        "negative_pooled_prompt_embeds",
+        "negative_add_time_ids",
+    ]
+
+    def __init__(
+        self,
+        vae: AutoencoderKL,
+        text_encoder: CLIPTextModel,
+        text_encoder_2: CLIPTextModelWithProjection,
+        tokenizer: CLIPTokenizer,
+        tokenizer_2: CLIPTokenizer,
+        unet: UNet2DConditionModel,
+        scheduler: KarrasDiffusionSchedulers,
+        feature_extractor: Optional[CLIPImageProcessor] = None,
+        image_encoder: Optional[CLIPVisionModelWithProjection] = None,
+        force_zeros_for_empty_prompt: bool = True,
+        add_watermarker: Optional[bool] = None,
+    ):
+        super().__init__()
+
+        self.register_modules(
+            vae=vae,
+            text_encoder=text_encoder,
+            text_encoder_2=text_encoder_2,
+            tokenizer=tokenizer,
+            tokenizer_2=tokenizer_2,
+            unet=unet,
+            scheduler=scheduler,
+            feature_extractor=feature_extractor,
+            image_encoder=image_encoder,
+        )
+        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
+        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
+        self.mask_processor = VaeImageProcessor(
+            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
+        )
+        self.default_sample_size = self.unet.config.sample_size
+
+        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
+
+        if add_watermarker:
+            self.watermark = StableDiffusionXLWatermarker()
+        else:
+            self.watermark = None
+
+    def enable_model_cpu_offload(self, gpu_id=0):
+        r"""
+        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
+        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
+        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
+        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
+        """
+        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
+            from accelerate import cpu_offload_with_hook
+        else:
+            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
+
+        device = torch.device(f"cuda:{gpu_id}")
+
+        if self.device.type != "cpu":
+            self.to("cpu", silence_dtype_warnings=True)
+            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
+
+        model_sequence = (
+            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
+        )
+        model_sequence.extend([self.unet, self.vae])
+
+        hook = None
+        for cpu_offloaded_model in model_sequence:
+            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
+
+        # We'll offload the last model manually.
+        self.final_offload_hook = hook
+
+    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
+    def encode_prompt(
+        self,
+        prompt: str,
+        prompt_2: Optional[str] = None,
+        device: Optional[torch.device] = None,
+        num_images_per_prompt: int = 1,
+        do_classifier_free_guidance: bool = True,
+        negative_prompt: Optional[str] = None,
+        negative_prompt_2: Optional[str] = None,
+        prompt_embeds: Optional[torch.Tensor] = None,
+        negative_prompt_embeds: Optional[torch.Tensor] = None,
+        pooled_prompt_embeds: Optional[torch.Tensor] = None,
+        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
+        lora_scale: Optional[float] = None,
+    ):
+        r"""
+        Encodes the prompt into text encoder hidden states.
+
+        Args:
+            prompt (`str` or `List[str]`, *optional*):
+                prompt to be encoded
+            prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+                used in both text-encoders
+            device: (`torch.device`):
+                torch device
+            num_images_per_prompt (`int`):
+                number of images that should be generated per prompt
+            do_classifier_free_guidance (`bool`):
+                whether to use classifier free guidance or not
+            negative_prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts not to guide the image generation. If not defined, one has to pass
+                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+                less than `1`).
+            negative_prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
+                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
+            prompt_embeds (`torch.Tensor`, *optional*):
+                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+                provided, text embeddings will be generated from `prompt` input argument.
+            negative_prompt_embeds (`torch.Tensor`, *optional*):
+                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+                argument.
+            pooled_prompt_embeds (`torch.Tensor`, *optional*):
+                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+                If not provided, pooled text embeddings will be generated from `prompt` input argument.
+            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
+                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
+                input argument.
+            lora_scale (`float`, *optional*):
+                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
+        """
+        device = device or self._execution_device
+
+        # set lora scale so that monkey patched LoRA
+        # function of text encoder can correctly access it
+        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
+            self._lora_scale = lora_scale
+
+        if prompt is not None and isinstance(prompt, str):
+            batch_size = 1
+        elif prompt is not None and isinstance(prompt, list):
+            batch_size = len(prompt)
+        else:
+            batch_size = prompt_embeds.shape[0]
+
+        # Define tokenizers and text encoders
+        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
+        text_encoders = (
+            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
+        )
+
+        if prompt_embeds is None:
+            prompt_2 = prompt_2 or prompt
+            # textual inversion: process multi-vector tokens if necessary
+            prompt_embeds_list = []
+            prompts = [prompt, prompt_2]
+            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
+                if isinstance(self, TextualInversionLoaderMixin):
+                    prompt = self.maybe_convert_prompt(prompt, tokenizer)
+
+                text_inputs = tokenizer(
+                    prompt,
+                    padding="max_length",
+                    max_length=tokenizer.model_max_length,
+                    truncation=True,
+                    return_tensors="pt",
+                )
+
+                text_input_ids = text_inputs.input_ids
+                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+
+                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
+                    text_input_ids, untruncated_ids
+                ):
+                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
+                    logger.warning(
+                        "The following part of your input was truncated because CLIP can only handle sequences up to"
+                        f" {tokenizer.model_max_length} tokens: {removed_text}"
+                    )
+
+                prompt_embeds = text_encoder(
+                    text_input_ids.to(device),
+                    output_hidden_states=True,
+                )
+
+                # We are only ALWAYS interested in the pooled output of the final text encoder
+                pooled_prompt_embeds = prompt_embeds[0]
+                prompt_embeds = prompt_embeds.hidden_states[-2]
+
+                prompt_embeds_list.append(prompt_embeds)
+
+            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
+
+        # get unconditional embeddings for classifier free guidance
+        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
+        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
+            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
+            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
+        elif do_classifier_free_guidance and negative_prompt_embeds is None:
+            negative_prompt = negative_prompt or ""
+            negative_prompt_2 = negative_prompt_2 or negative_prompt
+
+            uncond_tokens: List[str]
+            if prompt is not None and type(prompt) is not type(negative_prompt):
+                raise TypeError(
+                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+                    f" {type(prompt)}."
+                )
+            elif isinstance(negative_prompt, str):
+                uncond_tokens = [negative_prompt, negative_prompt_2]
+            elif batch_size != len(negative_prompt):
+                raise ValueError(
+                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+                    " the batch size of `prompt`."
+                )
+            else:
+                uncond_tokens = [negative_prompt, negative_prompt_2]
+
+            negative_prompt_embeds_list = []
+            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
+                if isinstance(self, TextualInversionLoaderMixin):
+                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
+
+                max_length = prompt_embeds.shape[1]
+                uncond_input = tokenizer(
+                    negative_prompt,
+                    padding="max_length",
+                    max_length=max_length,
+                    truncation=True,
+                    return_tensors="pt",
+                )
+
+                negative_prompt_embeds = text_encoder(
+                    uncond_input.input_ids.to(device),
+                    output_hidden_states=True,
+                )
+                # We are only ALWAYS interested in the pooled output of the final text encoder
+                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
+                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
+
+                negative_prompt_embeds_list.append(negative_prompt_embeds)
+
+            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
+
+        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
+        bs_embed, seq_len, _ = prompt_embeds.shape
+        # duplicate text embeddings for each generation per prompt, using mps friendly method
+        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
+
+        if do_classifier_free_guidance:
+            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+            seq_len = negative_prompt_embeds.shape[1]
+            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
+            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
+            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
+
+        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
+            bs_embed * num_images_per_prompt, -1
+        )
+        if do_classifier_free_guidance:
+            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
+                bs_embed * num_images_per_prompt, -1
+            )
+
+        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
+    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
+        dtype = next(self.image_encoder.parameters()).dtype
+
+        if not isinstance(image, torch.Tensor):
+            image = self.feature_extractor(image, return_tensors="pt").pixel_values
+
+        image = image.to(device=device, dtype=dtype)
+        if output_hidden_states:
+            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
+            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
+            uncond_image_enc_hidden_states = self.image_encoder(
+                torch.zeros_like(image), output_hidden_states=True
+            ).hidden_states[-2]
+            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
+                num_images_per_prompt, dim=0
+            )
+            return image_enc_hidden_states, uncond_image_enc_hidden_states
+        else:
+            image_embeds = self.image_encoder(image).image_embeds
+            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
+            uncond_image_embeds = torch.zeros_like(image_embeds)
+
+            return image_embeds, uncond_image_embeds
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+    def prepare_extra_step_kwargs(self, generator, eta):
+        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+        # and should be between [0, 1]
+
+        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+        extra_step_kwargs = {}
+        if accepts_eta:
+            extra_step_kwargs["eta"] = eta
+
+        # check if the scheduler accepts generator
+        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+        if accepts_generator:
+            extra_step_kwargs["generator"] = generator
+        return extra_step_kwargs
+
+    def check_inputs(
+        self,
+        prompt,
+        prompt_2,
+        height,
+        width,
+        strength,
+        callback_steps,
+        negative_prompt=None,
+        negative_prompt_2=None,
+        prompt_embeds=None,
+        negative_prompt_embeds=None,
+        pooled_prompt_embeds=None,
+        negative_pooled_prompt_embeds=None,
+        callback_on_step_end_tensor_inputs=None,
+    ):
+        if height % 8 != 0 or width % 8 != 0:
+            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+        if strength < 0 or strength > 1:
+            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
+
+        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
+            raise ValueError(
+                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+                f" {type(callback_steps)}."
+            )
+
+        if callback_on_step_end_tensor_inputs is not None and not all(
+            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
+        ):
+            raise ValueError(
+                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
+            )
+
+        if prompt is not None and prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+                " only forward one of the two."
+            )
+        elif prompt_2 is not None and prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+                " only forward one of the two."
+            )
+        elif prompt is None and prompt_embeds is None:
+            raise ValueError(
+                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
+            )
+        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
+            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
+            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
+
+        if negative_prompt is not None and negative_prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
+                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+            )
+        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
+                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+            )
+
+        if prompt_embeds is not None and negative_prompt_embeds is not None:
+            if prompt_embeds.shape != negative_prompt_embeds.shape:
+                raise ValueError(
+                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
+                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
+                    f" {negative_prompt_embeds.shape}."
+                )
+
+        if prompt_embeds is not None and pooled_prompt_embeds is None:
+            raise ValueError(
+                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
+            )
+
+        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
+            raise ValueError(
+                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
+            )
+
+    def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
+        # get the original timestep using init_timestep
+        if denoising_start is None:
+            init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+            t_start = max(num_inference_steps - init_timestep, 0)
+        else:
+            t_start = 0
+
+        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
+
+        # Strength is irrelevant if we directly request a timestep to start at;
+        # that is, strength is determined by the denoising_start instead.
+        if denoising_start is not None:
+            discrete_timestep_cutoff = int(
+                round(
+                    self.scheduler.config.num_train_timesteps
+                    - (denoising_start * self.scheduler.config.num_train_timesteps)
+                )
+            )
+
+            num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
+            if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
+                # if the scheduler is a 2nd order scheduler we might have to do +1
+                # because `num_inference_steps` might be even given that every timestep
+                # (except the highest one) is duplicated. If `num_inference_steps` is even it would
+                # mean that we cut the timesteps in the middle of the denoising step
+                # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
+                # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
+                num_inference_steps = num_inference_steps + 1
+
+            # because t_n+1 >= t_n, we slice the timesteps starting from the end
+            timesteps = timesteps[-num_inference_steps:]
+            return timesteps, num_inference_steps
+
+        return timesteps, num_inference_steps - t_start
+
+    def prepare_latents(
+        self,
+        image,
+        mask,
+        width,
+        height,
+        num_channels_latents,
+        timestep,
+        batch_size,
+        num_images_per_prompt,
+        dtype,
+        device,
+        generator=None,
+        add_noise=True,
+        latents=None,
+        is_strength_max=True,
+        return_noise=False,
+        return_image_latents=False,
+    ):
+        batch_size *= num_images_per_prompt
+
+        if image is None:
+            shape = (
+                batch_size,
+                num_channels_latents,
+                int(height) // self.vae_scale_factor,
+                int(width) // self.vae_scale_factor,
+            )
+            if isinstance(generator, list) and len(generator) != batch_size:
+                raise ValueError(
+                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+                )
+
+            if latents is None:
+                latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+            else:
+                latents = latents.to(device)
+
+            # scale the initial noise by the standard deviation required by the scheduler
+            latents = latents * self.scheduler.init_noise_sigma
+            return latents
+
+        elif mask is None:
+            if not isinstance(image, (torch.Tensor, Image.Image, list)):
+                raise ValueError(
+                    f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
+                )
+
+            # Offload text encoder if `enable_model_cpu_offload` was enabled
+            if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
+                self.text_encoder_2.to("cpu")
+                torch.cuda.empty_cache()
+
+            image = image.to(device=device, dtype=dtype)
+
+            if image.shape[1] == 4:
+                init_latents = image
+
+            else:
+                # make sure the VAE is in float32 mode, as it overflows in float16
+                if self.vae.config.force_upcast:
+                    image = image.float()
+                    self.vae.to(dtype=torch.float32)
+
+                if isinstance(generator, list) and len(generator) != batch_size:
+                    raise ValueError(
+                        f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+                        f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+                    )
+
+                elif isinstance(generator, list):
+                    init_latents = [
+                        retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
+                        for i in range(batch_size)
+                    ]
+                    init_latents = torch.cat(init_latents, dim=0)
+                else:
+                    init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
+
+                if self.vae.config.force_upcast:
+                    self.vae.to(dtype)
+
+                init_latents = init_latents.to(dtype)
+                init_latents = self.vae.config.scaling_factor * init_latents
+
+            if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
+                # expand init_latents for batch_size
+                additional_image_per_prompt = batch_size // init_latents.shape[0]
+                init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
+            elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
+                raise ValueError(
+                    f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
+                )
+            else:
+                init_latents = torch.cat([init_latents], dim=0)
+
+            if add_noise:
+                shape = init_latents.shape
+                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+                # get latents
+                init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+
+            latents = init_latents
+            return latents
+
+        else:
+            shape = (
+                batch_size,
+                num_channels_latents,
+                int(height) // self.vae_scale_factor,
+                int(width) // self.vae_scale_factor,
+            )
+            if isinstance(generator, list) and len(generator) != batch_size:
+                raise ValueError(
+                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+                )
+
+            if (image is None or timestep is None) and not is_strength_max:
+                raise ValueError(
+                    "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
+                    "However, either the image or the noise timestep has not been provided."
+                )
+
+            if image.shape[1] == 4:
+                image_latents = image.to(device=device, dtype=dtype)
+                image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
+            elif return_image_latents or (latents is None and not is_strength_max):
+                image = image.to(device=device, dtype=dtype)
+                image_latents = self._encode_vae_image(image=image, generator=generator)
+                image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
+
+            if latents is None and add_noise:
+                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+                # if strength is 1. then initialise the latents to noise, else initial to image + noise
+                latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
+                # if pure noise then scale the initial latents by the  Scheduler's init sigma
+                latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
+            elif add_noise:
+                noise = latents.to(device)
+                latents = noise * self.scheduler.init_noise_sigma
+            else:
+                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+                latents = image_latents.to(device)
+
+            outputs = (latents,)
+
+            if return_noise:
+                outputs += (noise,)
+
+            if return_image_latents:
+                outputs += (image_latents,)
+
+            return outputs
+
+    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
+        dtype = image.dtype
+        if self.vae.config.force_upcast:
+            image = image.float()
+            self.vae.to(dtype=torch.float32)
+
+        if isinstance(generator, list):
+            image_latents = [
+                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
+                for i in range(image.shape[0])
+            ]
+            image_latents = torch.cat(image_latents, dim=0)
+        else:
+            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
+
+        if self.vae.config.force_upcast:
+            self.vae.to(dtype)
+
+        image_latents = image_latents.to(dtype)
+        image_latents = self.vae.config.scaling_factor * image_latents
+
+        return image_latents
+
+    def prepare_mask_latents(
+        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
+    ):
+        # resize the mask to latents shape as we concatenate the mask to the latents
+        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
+        # and half precision
+        mask = torch.nn.functional.interpolate(
+            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
+        )
+        mask = mask.to(device=device, dtype=dtype)
+
+        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
+        if mask.shape[0] < batch_size:
+            if not batch_size % mask.shape[0] == 0:
+                raise ValueError(
+                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
+                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
+                    " of masks that you pass is divisible by the total requested batch size."
+                )
+            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
+
+        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
+
+        if masked_image is not None and masked_image.shape[1] == 4:
+            masked_image_latents = masked_image
+        else:
+            masked_image_latents = None
+
+        if masked_image is not None:
+            if masked_image_latents is None:
+                masked_image = masked_image.to(device=device, dtype=dtype)
+                masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
+
+            if masked_image_latents.shape[0] < batch_size:
+                if not batch_size % masked_image_latents.shape[0] == 0:
+                    raise ValueError(
+                        "The passed images and the required batch size don't match. Images are supposed to be duplicated"
+                        f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
+                        " Make sure the number of images that you pass is divisible by the total requested batch size."
+                    )
+                masked_image_latents = masked_image_latents.repeat(
+                    batch_size // masked_image_latents.shape[0], 1, 1, 1
+                )
+
+            masked_image_latents = (
+                torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
+            )
+
+            # aligning device to prevent device errors when concating it with the latent model input
+            masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
+
+        return mask, masked_image_latents
+
+    def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
+        add_time_ids = list(original_size + crops_coords_top_left + target_size)
+
+        passed_add_embed_dim = (
+            self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
+        )
+        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
+
+        if expected_add_embed_dim != passed_add_embed_dim:
+            raise ValueError(
+                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
+            )
+
+        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
+        return add_time_ids
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
+    def upcast_vae(self):
+        dtype = self.vae.dtype
+        self.vae.to(dtype=torch.float32)
+        use_torch_2_0_or_xformers = isinstance(
+            self.vae.decoder.mid_block.attentions[0].processor,
+            (
+                AttnProcessor2_0,
+                XFormersAttnProcessor,
+                LoRAXFormersAttnProcessor,
+                LoRAAttnProcessor2_0,
+            ),
+        )
+        # if xformers or torch_2_0 is used attention block does not need
+        # to be in float32 which can save lots of memory
+        if use_torch_2_0_or_xformers:
+            self.vae.post_quant_conv.to(dtype)
+            self.vae.decoder.conv_in.to(dtype)
+            self.vae.decoder.mid_block.to(dtype)
+
+    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
+    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
+        """
+        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
+
+        Args:
+            timesteps (`torch.Tensor`):
+                generate embedding vectors at these timesteps
+            embedding_dim (`int`, *optional*, defaults to 512):
+                dimension of the embeddings to generate
+            dtype:
+                data type of the generated embeddings
+
+        Returns:
+            `torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
+        """
+        assert len(w.shape) == 1
+        w = w * 1000.0
+
+        half_dim = embedding_dim // 2
+        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
+        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
+        emb = w.to(dtype)[:, None] * emb[None, :]
+        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+        if embedding_dim % 2 == 1:  # zero pad
+            emb = torch.nn.functional.pad(emb, (0, 1))
+        assert emb.shape == (w.shape[0], embedding_dim)
+        return emb
+
+    @property
+    def guidance_scale(self):
+        return self._guidance_scale
+
+    @property
+    def guidance_rescale(self):
+        return self._guidance_rescale
+
+    @property
+    def clip_skip(self):
+        return self._clip_skip
+
+    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+    # corresponds to doing no classifier free guidance.
+    @property
+    def do_classifier_free_guidance(self):
+        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
+
+    @property
+    def cross_attention_kwargs(self):
+        return self._cross_attention_kwargs
+
+    @property
+    def denoising_end(self):
+        return self._denoising_end
+
+    @property
+    def denoising_start(self):
+        return self._denoising_start
+
+    @property
+    def num_timesteps(self):
+        return self._num_timesteps
+
+    @torch.no_grad()
+    @replace_example_docstring(EXAMPLE_DOC_STRING)
+    def __call__(
+        self,
+        prompt: str = None,
+        prompt_2: Optional[str] = None,
+        image: Optional[PipelineImageInput] = None,
+        mask_image: Optional[PipelineImageInput] = None,
+        masked_image_latents: Optional[torch.Tensor] = None,
+        height: Optional[int] = None,
+        width: Optional[int] = None,
+        strength: float = 0.8,
+        num_inference_steps: int = 50,
+        timesteps: List[int] = None,
+        denoising_start: Optional[float] = None,
+        denoising_end: Optional[float] = None,
+        guidance_scale: float = 5.0,
+        negative_prompt: Optional[str] = None,
+        negative_prompt_2: Optional[str] = None,
+        num_images_per_prompt: Optional[int] = 1,
+        eta: float = 0.0,
+        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+        latents: Optional[torch.Tensor] = None,
+        ip_adapter_image: Optional[PipelineImageInput] = None,
+        prompt_embeds: Optional[torch.Tensor] = None,
+        negative_prompt_embeds: Optional[torch.Tensor] = None,
+        pooled_prompt_embeds: Optional[torch.Tensor] = None,
+        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
+        output_type: Optional[str] = "pil",
+        return_dict: bool = True,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        guidance_rescale: float = 0.0,
+        original_size: Optional[Tuple[int, int]] = None,
+        crops_coords_top_left: Tuple[int, int] = (0, 0),
+        target_size: Optional[Tuple[int, int]] = None,
+        clip_skip: Optional[int] = None,
+        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
+        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
+        **kwargs,
+    ):
+        r"""
+        Function invoked when calling the pipeline for generation.
+
+        Args:
+            prompt (`str`):
+                The prompt  to guide the image generation. If not defined, one has to pass `prompt_embeds`.
+                instead.
+            prompt_2 (`str`):
+                The prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+                used in both text-encoders
+            image (`PipelineImageInput`, *optional*):
+                `Image`, or tensor representing an image batch, that will be used as the starting point for the
+                process.
+            mask_image (`PipelineImageInput`, *optional*):
+                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
+                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
+                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
+                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
+            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+                The height in pixels of the generated image.
+            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+                The width in pixels of the generated image.
+            strength (`float`, *optional*, defaults to 0.8):
+                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
+                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
+                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
+                noise will be maximum and the denoising process will run for the full number of iterations specified in
+                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+            num_inference_steps (`int`, *optional*, defaults to 50):
+                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+                expense of slower inference.
+            timesteps (`List[int]`, *optional*):
+                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
+                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
+                passed will be used. Must be in descending order.
+            denoising_start (`float`, *optional*):
+                When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
+                bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
+                it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
+                strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
+                is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
+                Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
+            denoising_end (`float`, *optional*):
+                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
+                completed before it is intentionally prematurely terminated. As a result, the returned sample will
+                still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
+                denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
+                final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
+                forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image
+                Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
+            guidance_scale (`float`, *optional*, defaults to 5.0):
+                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+                `guidance_scale` is defined as `w` of equation 2. of [Imagen
+                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+                usually at the expense of lower image quality.
+            negative_prompt (`str`):
+                The prompt not to guide the image generation. If not defined, one has to pass
+                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+                less than `1`).
+            negative_prompt_2 (`str`):
+                The prompt not to guide the image generation to be sent to `tokenizer_2` and
+                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
+            num_images_per_prompt (`int`, *optional*, defaults to 1):
+                The number of images to generate per prompt.
+            eta (`float`, *optional*, defaults to 0.0):
+                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+                [`schedulers.DDIMScheduler`], will be ignored for others.
+            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
+                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
+                to make generation deterministic.
+            latents (`torch.Tensor`, *optional*):
+                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+                tensor will ge generated by sampling using the supplied random `generator`.
+            ip_adapter_image: (`PipelineImageInput`, *optional*):
+                Optional image input to work with IP Adapters.
+            prompt_embeds (`torch.Tensor`, *optional*):
+                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+                provided, text embeddings will be generated from `prompt` input argument.
+            negative_prompt_embeds (`torch.Tensor`, *optional*):
+                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+                argument.
+            pooled_prompt_embeds (`torch.Tensor`, *optional*):
+                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+                If not provided, pooled text embeddings will be generated from `prompt` input argument.
+            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
+                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
+                input argument.
+            output_type (`str`, *optional*, defaults to `"pil"`):
+                The output format of the generate image. Choose between
+                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+            return_dict (`bool`, *optional*, defaults to `True`):
+                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
+                of a plain tuple.
+            cross_attention_kwargs (`dict`, *optional*):
+                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+                `self.processor` in
+                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+            guidance_rescale (`float`, *optional*, defaults to 0.0):
+                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
+                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
+                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
+                Guidance rescale factor should fix overexposure when using zero terminal SNR.
+            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
+                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
+                explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
+                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
+                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
+                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                For most cases, `target_size` should be set to the desired height and width of the generated image. If
+                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
+                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            clip_skip (`int`, *optional*):
+                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+                the output of the pre-final layer will be used for computing the prompt embeddings.
+            callback_on_step_end (`Callable`, *optional*):
+                A function that calls at the end of each denoising steps during the inference. The function is called
+                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
+                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
+                `callback_on_step_end_tensor_inputs`.
+            callback_on_step_end_tensor_inputs (`List`, *optional*):
+                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
+                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
+                `._callback_tensor_inputs` attribute of your pipeline class.
+
+        Examples:
+
+        Returns:
+            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
+            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
+            `tuple`. When returning a tuple, the first element is a list with the generated images.
+        """
+
+        callback = kwargs.pop("callback", None)
+        callback_steps = kwargs.pop("callback_steps", None)
+
+        if callback is not None:
+            deprecate(
+                "callback",
+                "1.0.0",
+                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
+            )
+        if callback_steps is not None:
+            deprecate(
+                "callback_steps",
+                "1.0.0",
+                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
+            )
+
+        # 0. Default height and width to unet
+        height = height or self.default_sample_size * self.vae_scale_factor
+        width = width or self.default_sample_size * self.vae_scale_factor
+
+        original_size = original_size or (height, width)
+        target_size = target_size or (height, width)
+
+        # 1. Check inputs. Raise error if not correct
+        self.check_inputs(
+            prompt,
+            prompt_2,
+            height,
+            width,
+            strength,
+            callback_steps,
+            negative_prompt,
+            negative_prompt_2,
+            prompt_embeds,
+            negative_prompt_embeds,
+            pooled_prompt_embeds,
+            negative_pooled_prompt_embeds,
+            callback_on_step_end_tensor_inputs,
+        )
+
+        self._guidance_scale = guidance_scale
+        self._guidance_rescale = guidance_rescale
+        self._clip_skip = clip_skip
+        self._cross_attention_kwargs = cross_attention_kwargs
+        self._denoising_end = denoising_end
+        self._denoising_start = denoising_start
+
+        # 2. Define call parameters
+        if prompt is not None and isinstance(prompt, str):
+            batch_size = 1
+        elif prompt is not None and isinstance(prompt, list):
+            batch_size = len(prompt)
+        else:
+            batch_size = prompt_embeds.shape[0]
+
+        device = self._execution_device
+
+        if ip_adapter_image is not None:
+            output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
+            image_embeds, negative_image_embeds = self.encode_image(
+                ip_adapter_image, device, num_images_per_prompt, output_hidden_state
+            )
+            if self.do_classifier_free_guidance:
+                image_embeds = torch.cat([negative_image_embeds, image_embeds])
+
+        # 3. Encode input prompt
+        (self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None)
+
+        negative_prompt = negative_prompt if negative_prompt is not None else ""
+
+        (
+            prompt_embeds,
+            negative_prompt_embeds,
+            pooled_prompt_embeds,
+            negative_pooled_prompt_embeds,
+        ) = get_weighted_text_embeddings_sdxl(
+            pipe=self,
+            prompt=prompt,
+            neg_prompt=negative_prompt,
+            num_images_per_prompt=num_images_per_prompt,
+            clip_skip=clip_skip,
+        )
+        dtype = prompt_embeds.dtype
+
+        if isinstance(image, Image.Image):
+            image = self.image_processor.preprocess(image, height=height, width=width)
+        if image is not None:
+            image = image.to(device=self.device, dtype=dtype)
+
+        if isinstance(mask_image, Image.Image):
+            mask = self.mask_processor.preprocess(mask_image, height=height, width=width)
+        else:
+            mask = mask_image
+        if mask_image is not None:
+            mask = mask.to(device=self.device, dtype=dtype)
+
+            if masked_image_latents is not None:
+                masked_image = masked_image_latents
+            elif image.shape[1] == 4:
+                # if image is in latent space, we can't mask it
+                masked_image = None
+            else:
+                masked_image = image * (mask < 0.5)
+        else:
+            mask = None
+
+        # 4. Prepare timesteps
+        def denoising_value_valid(dnv):
+            return isinstance(dnv, float) and 0 < dnv < 1
+
+        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
+        if image is not None:
+            timesteps, num_inference_steps = self.get_timesteps(
+                num_inference_steps,
+                strength,
+                device,
+                denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
+            )
+
+            # check that number of inference steps is not < 1 - as this doesn't make sense
+            if num_inference_steps < 1:
+                raise ValueError(
+                    f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
+                    f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
+                )
+
+        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
+        is_strength_max = strength == 1.0
+        add_noise = True if self.denoising_start is None else False
+
+        # 5. Prepare latent variables
+        num_channels_latents = self.vae.config.latent_channels
+        num_channels_unet = self.unet.config.in_channels
+        return_image_latents = num_channels_unet == 4
+
+        latents = self.prepare_latents(
+            image=image,
+            mask=mask,
+            width=width,
+            height=height,
+            num_channels_latents=num_channels_unet,
+            timestep=latent_timestep,
+            batch_size=batch_size,
+            num_images_per_prompt=num_images_per_prompt,
+            dtype=prompt_embeds.dtype,
+            device=device,
+            generator=generator,
+            add_noise=add_noise,
+            latents=latents,
+            is_strength_max=is_strength_max,
+            return_noise=True,
+            return_image_latents=return_image_latents,
+        )
+
+        if mask is not None:
+            if return_image_latents:
+                latents, noise, image_latents = latents
+            else:
+                latents, noise = latents
+
+        # 5.1 Prepare mask latent variables
+        if mask is not None:
+            mask, masked_image_latents = self.prepare_mask_latents(
+                mask=mask,
+                masked_image=masked_image,
+                batch_size=batch_size * num_images_per_prompt,
+                height=height,
+                width=width,
+                dtype=prompt_embeds.dtype,
+                device=device,
+                generator=generator,
+                do_classifier_free_guidance=self.do_classifier_free_guidance,
+            )
+
+            # Check that sizes of mask, masked image and latents match
+            if num_channels_unet == 9:
+                # default case for runwayml/stable-diffusion-inpainting
+                num_channels_mask = mask.shape[1]
+                num_channels_masked_image = masked_image_latents.shape[1]
+                if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet:
+                    raise ValueError(
+                        f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
+                        f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
+                        f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
+                        f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
+                        " `pipeline.unet` or your `mask_image` or `image` input."
+                    )
+            elif num_channels_unet != 4:
+                raise ValueError(
+                    f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
+                )
+
+        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+        # 6.1 Add image embeds for IP-Adapter
+        added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else {}
+
+        height, width = latents.shape[-2:]
+        height = height * self.vae_scale_factor
+        width = width * self.vae_scale_factor
+
+        original_size = original_size or (height, width)
+        target_size = target_size or (height, width)
+
+        # 7. Prepare added time ids & embeddings
+        add_text_embeds = pooled_prompt_embeds
+        add_time_ids = self._get_add_time_ids(
+            original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
+        )
+
+        if self.do_classifier_free_guidance:
+            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
+            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
+            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
+
+        prompt_embeds = prompt_embeds.to(device)
+        add_text_embeds = add_text_embeds.to(device)
+        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
+
+        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
+
+        # 7.1 Apply denoising_end
+        if (
+            self.denoising_end is not None
+            and self.denoising_start is not None
+            and denoising_value_valid(self.denoising_end)
+            and denoising_value_valid(self.denoising_start)
+            and self.denoising_start >= self.denoising_end
+        ):
+            raise ValueError(
+                f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
+                + f" {self.denoising_end} when using type float."
+            )
+        elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
+            discrete_timestep_cutoff = int(
+                round(
+                    self.scheduler.config.num_train_timesteps
+                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
+                )
+            )
+            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
+            timesteps = timesteps[:num_inference_steps]
+
+        # 8. Optionally get Guidance Scale Embedding
+        timestep_cond = None
+        if self.unet.config.time_cond_proj_dim is not None:
+            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
+            timestep_cond = self.get_guidance_scale_embedding(
+                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
+            ).to(device=device, dtype=latents.dtype)
+
+        self._num_timesteps = len(timesteps)
+
+        # 9. Denoising loop
+        with self.progress_bar(total=num_inference_steps) as progress_bar:
+            for i, t in enumerate(timesteps):
+                # expand the latents if we are doing classifier free guidance
+                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
+
+                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+                if mask is not None and num_channels_unet == 9:
+                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
+
+                # predict the noise residual
+                added_cond_kwargs.update({"text_embeds": add_text_embeds, "time_ids": add_time_ids})
+                noise_pred = self.unet(
+                    latent_model_input,
+                    t,
+                    encoder_hidden_states=prompt_embeds,
+                    timestep_cond=timestep_cond,
+                    cross_attention_kwargs=self.cross_attention_kwargs,
+                    added_cond_kwargs=added_cond_kwargs,
+                    return_dict=False,
+                )[0]
+
+                # perform guidance
+                if self.do_classifier_free_guidance:
+                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+                if self.do_classifier_free_guidance and guidance_rescale > 0.0:
+                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
+                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
+
+                # compute the previous noisy sample x_t -> x_t-1
+                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
+
+                if mask is not None and num_channels_unet == 4:
+                    init_latents_proper = image_latents
+
+                    if self.do_classifier_free_guidance:
+                        init_mask, _ = mask.chunk(2)
+                    else:
+                        init_mask = mask
+
+                    if i < len(timesteps) - 1:
+                        noise_timestep = timesteps[i + 1]
+                        init_latents_proper = self.scheduler.add_noise(
+                            init_latents_proper, noise, torch.tensor([noise_timestep])
+                        )
+
+                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents
+
+                if callback_on_step_end is not None:
+                    callback_kwargs = {}
+                    for k in callback_on_step_end_tensor_inputs:
+                        callback_kwargs[k] = locals()[k]
+                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
+
+                    latents = callback_outputs.pop("latents", latents)
+                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
+                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
+                    add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
+                    negative_pooled_prompt_embeds = callback_outputs.pop(
+                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
+                    )
+                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
+
+                # call the callback, if provided
+                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+                    progress_bar.update()
+                    if callback is not None and i % callback_steps == 0:
+                        step_idx = i // getattr(self.scheduler, "order", 1)
+                        callback(step_idx, t, latents)
+
+        if not output_type == "latent":
+            # make sure the VAE is in float32 mode, as it overflows in float16
+            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
+
+            if needs_upcasting:
+                self.upcast_vae()
+                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
+
+            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
+
+            # cast back to fp16 if needed
+            if needs_upcasting:
+                self.vae.to(dtype=torch.float16)
+        else:
+            image = latents
+            return StableDiffusionXLPipelineOutput(images=image)
+
+        # apply watermark if available
+        if self.watermark is not None:
+            image = self.watermark.apply_watermark(image)
+
+        image = self.image_processor.postprocess(image, output_type=output_type)
+
+        # Offload last model to CPU
+        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
+            self.final_offload_hook.offload()
+
+        if not return_dict:
+            return (image,)
+
+        return StableDiffusionXLPipelineOutput(images=image)
+
+    def text2img(
+        self,
+        prompt: str = None,
+        prompt_2: Optional[str] = None,
+        height: Optional[int] = None,
+        width: Optional[int] = None,
+        num_inference_steps: int = 50,
+        timesteps: List[int] = None,
+        denoising_start: Optional[float] = None,
+        denoising_end: Optional[float] = None,
+        guidance_scale: float = 5.0,
+        negative_prompt: Optional[str] = None,
+        negative_prompt_2: Optional[str] = None,
+        num_images_per_prompt: Optional[int] = 1,
+        eta: float = 0.0,
+        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+        latents: Optional[torch.Tensor] = None,
+        ip_adapter_image: Optional[PipelineImageInput] = None,
+        prompt_embeds: Optional[torch.Tensor] = None,
+        negative_prompt_embeds: Optional[torch.Tensor] = None,
+        pooled_prompt_embeds: Optional[torch.Tensor] = None,
+        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
+        output_type: Optional[str] = "pil",
+        return_dict: bool = True,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        guidance_rescale: float = 0.0,
+        original_size: Optional[Tuple[int, int]] = None,
+        crops_coords_top_left: Tuple[int, int] = (0, 0),
+        target_size: Optional[Tuple[int, int]] = None,
+        clip_skip: Optional[int] = None,
+        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
+        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
+        **kwargs,
+    ):
+        r"""
+        Function invoked when calling pipeline for text-to-image.
+
+        Refer to the documentation of the `__call__` method for parameter descriptions.
+        """
+        return self.__call__(
+            prompt=prompt,
+            prompt_2=prompt_2,
+            height=height,
+            width=width,
+            num_inference_steps=num_inference_steps,
+            timesteps=timesteps,
+            denoising_start=denoising_start,
+            denoising_end=denoising_end,
+            guidance_scale=guidance_scale,
+            negative_prompt=negative_prompt,
+            negative_prompt_2=negative_prompt_2,
+            num_images_per_prompt=num_images_per_prompt,
+            eta=eta,
+            generator=generator,
+            latents=latents,
+            ip_adapter_image=ip_adapter_image,
+            prompt_embeds=prompt_embeds,
+            negative_prompt_embeds=negative_prompt_embeds,
+            pooled_prompt_embeds=pooled_prompt_embeds,
+            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
+            output_type=output_type,
+            return_dict=return_dict,
+            cross_attention_kwargs=cross_attention_kwargs,
+            guidance_rescale=guidance_rescale,
+            original_size=original_size,
+            crops_coords_top_left=crops_coords_top_left,
+            target_size=target_size,
+            clip_skip=clip_skip,
+            callback_on_step_end=callback_on_step_end,
+            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
+            **kwargs,
+        )
+
+    def img2img(
+        self,
+        prompt: str = None,
+        prompt_2: Optional[str] = None,
+        image: Optional[PipelineImageInput] = None,
+        height: Optional[int] = None,
+        width: Optional[int] = None,
+        strength: float = 0.8,
+        num_inference_steps: int = 50,
+        timesteps: List[int] = None,
+        denoising_start: Optional[float] = None,
+        denoising_end: Optional[float] = None,
+        guidance_scale: float = 5.0,
+        negative_prompt: Optional[str] = None,
+        negative_prompt_2: Optional[str] = None,
+        num_images_per_prompt: Optional[int] = 1,
+        eta: float = 0.0,
+        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+        latents: Optional[torch.Tensor] = None,
+        ip_adapter_image: Optional[PipelineImageInput] = None,
+        prompt_embeds: Optional[torch.Tensor] = None,
+        negative_prompt_embeds: Optional[torch.Tensor] = None,
+        pooled_prompt_embeds: Optional[torch.Tensor] = None,
+        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
+        output_type: Optional[str] = "pil",
+        return_dict: bool = True,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        guidance_rescale: float = 0.0,
+        original_size: Optional[Tuple[int, int]] = None,
+        crops_coords_top_left: Tuple[int, int] = (0, 0),
+        target_size: Optional[Tuple[int, int]] = None,
+        clip_skip: Optional[int] = None,
+        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
+        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
+        **kwargs,
+    ):
+        r"""
+        Function invoked when calling pipeline for image-to-image.
+
+        Refer to the documentation of the `__call__` method for parameter descriptions.
+        """
+        return self.__call__(
+            prompt=prompt,
+            prompt_2=prompt_2,
+            image=image,
+            height=height,
+            width=width,
+            strength=strength,
+            num_inference_steps=num_inference_steps,
+            timesteps=timesteps,
+            denoising_start=denoising_start,
+            denoising_end=denoising_end,
+            guidance_scale=guidance_scale,
+            negative_prompt=negative_prompt,
+            negative_prompt_2=negative_prompt_2,
+            num_images_per_prompt=num_images_per_prompt,
+            eta=eta,
+            generator=generator,
+            latents=latents,
+            ip_adapter_image=ip_adapter_image,
+            prompt_embeds=prompt_embeds,
+            negative_prompt_embeds=negative_prompt_embeds,
+            pooled_prompt_embeds=pooled_prompt_embeds,
+            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
+            output_type=output_type,
+            return_dict=return_dict,
+            cross_attention_kwargs=cross_attention_kwargs,
+            guidance_rescale=guidance_rescale,
+            original_size=original_size,
+            crops_coords_top_left=crops_coords_top_left,
+            target_size=target_size,
+            clip_skip=clip_skip,
+            callback_on_step_end=callback_on_step_end,
+            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
+            **kwargs,
+        )
+
+    def inpaint(
+        self,
+        prompt: str = None,
+        prompt_2: Optional[str] = None,
+        image: Optional[PipelineImageInput] = None,
+        mask_image: Optional[PipelineImageInput] = None,
+        masked_image_latents: Optional[torch.Tensor] = None,
+        height: Optional[int] = None,
+        width: Optional[int] = None,
+        strength: float = 0.8,
+        num_inference_steps: int = 50,
+        timesteps: List[int] = None,
+        denoising_start: Optional[float] = None,
+        denoising_end: Optional[float] = None,
+        guidance_scale: float = 5.0,
+        negative_prompt: Optional[str] = None,
+        negative_prompt_2: Optional[str] = None,
+        num_images_per_prompt: Optional[int] = 1,
+        eta: float = 0.0,
+        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+        latents: Optional[torch.Tensor] = None,
+        ip_adapter_image: Optional[PipelineImageInput] = None,
+        prompt_embeds: Optional[torch.Tensor] = None,
+        negative_prompt_embeds: Optional[torch.Tensor] = None,
+        pooled_prompt_embeds: Optional[torch.Tensor] = None,
+        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
+        output_type: Optional[str] = "pil",
+        return_dict: bool = True,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        guidance_rescale: float = 0.0,
+        original_size: Optional[Tuple[int, int]] = None,
+        crops_coords_top_left: Tuple[int, int] = (0, 0),
+        target_size: Optional[Tuple[int, int]] = None,
+        clip_skip: Optional[int] = None,
+        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
+        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
+        **kwargs,
+    ):
+        r"""
+        Function invoked when calling pipeline for inpainting.
+
+        Refer to the documentation of the `__call__` method for parameter descriptions.
+        """
+        return self.__call__(
+            prompt=prompt,
+            prompt_2=prompt_2,
+            image=image,
+            mask_image=mask_image,
+            masked_image_latents=masked_image_latents,
+            height=height,
+            width=width,
+            strength=strength,
+            num_inference_steps=num_inference_steps,
+            timesteps=timesteps,
+            denoising_start=denoising_start,
+            denoising_end=denoising_end,
+            guidance_scale=guidance_scale,
+            negative_prompt=negative_prompt,
+            negative_prompt_2=negative_prompt_2,
+            num_images_per_prompt=num_images_per_prompt,
+            eta=eta,
+            generator=generator,
+            latents=latents,
+            ip_adapter_image=ip_adapter_image,
+            prompt_embeds=prompt_embeds,
+            negative_prompt_embeds=negative_prompt_embeds,
+            pooled_prompt_embeds=pooled_prompt_embeds,
+            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
+            output_type=output_type,
+            return_dict=return_dict,
+            cross_attention_kwargs=cross_attention_kwargs,
+            guidance_rescale=guidance_rescale,
+            original_size=original_size,
+            crops_coords_top_left=crops_coords_top_left,
+            target_size=target_size,
+            clip_skip=clip_skip,
+            callback_on_step_end=callback_on_step_end,
+            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
+            **kwargs,
+        )
+
+    # Override to properly handle the loading and unloading of the additional text encoder.
+    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
+        # We could have accessed the unet config from `lora_state_dict()` too. We pass
+        # it here explicitly to be able to tell that it's coming from an SDXL
+        # pipeline.
+        state_dict, network_alphas = self.lora_state_dict(
+            pretrained_model_name_or_path_or_dict,
+            unet_config=self.unet.config,
+            **kwargs,
+        )
+        self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
+
+        text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
+        if len(text_encoder_state_dict) > 0:
+            self.load_lora_into_text_encoder(
+                text_encoder_state_dict,
+                network_alphas=network_alphas,
+                text_encoder=self.text_encoder,
+                prefix="text_encoder",
+                lora_scale=self.lora_scale,
+            )
+
+        text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
+        if len(text_encoder_2_state_dict) > 0:
+            self.load_lora_into_text_encoder(
+                text_encoder_2_state_dict,
+                network_alphas=network_alphas,
+                text_encoder=self.text_encoder_2,
+                prefix="text_encoder_2",
+                lora_scale=self.lora_scale,
+            )
+
+    @classmethod
+    def save_lora_weights(
+        self,
+        save_directory: Union[str, os.PathLike],
+        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = False,
+    ):
+        state_dict = {}
+
+        def pack_weights(layers, prefix):
+            layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
+            layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
+            return layers_state_dict
+
+        state_dict.update(pack_weights(unet_lora_layers, "unet"))
+
+        if text_encoder_lora_layers and text_encoder_2_lora_layers:
+            state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
+            state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
+
+        self.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+    def _remove_text_encoder_monkey_patch(self):
+        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
+        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)