Upload folder using huggingface_hub
Browse files
main/pipeline_stable_diffusion_xl_t5.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Philip Brown, ppbrown@github
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
###########################################################################
|
16 |
+
# This pipeline attempts to use a model that has SDXL vae, T5 text encoder,
|
17 |
+
# and SDXL unet.
|
18 |
+
# At the present time, there are no pretrained models that give pleasing
|
19 |
+
# output. So as yet, (2025/06/10) this pipeline is somewhat of a tech
|
20 |
+
# demo proving that the pieces can at least be put together.
|
21 |
+
# Hopefully, it will encourage someone with the hardware available to
|
22 |
+
# throw enough resources into training one up.
|
23 |
+
|
24 |
+
|
25 |
+
from typing import Optional
|
26 |
+
|
27 |
+
import torch.nn as nn
|
28 |
+
from transformers import (
|
29 |
+
CLIPImageProcessor,
|
30 |
+
CLIPTokenizer,
|
31 |
+
CLIPVisionModelWithProjection,
|
32 |
+
T5EncoderModel,
|
33 |
+
)
|
34 |
+
|
35 |
+
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
|
36 |
+
from diffusers.image_processor import VaeImageProcessor
|
37 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
38 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
39 |
+
|
40 |
+
|
41 |
+
# Note: At this time, the intent is to use the T5 encoder mentioned
|
42 |
+
# below, with zero changes.
|
43 |
+
# Therefore, the model deliberately does not store the T5 encoder model bytes,
|
44 |
+
# (Since they are not unique!)
|
45 |
+
# but instead takes advantage of huggingface hub cache loading
|
46 |
+
|
47 |
+
T5_NAME = "mcmonkey/google_t5-v1_1-xxl_encoderonly"
|
48 |
+
|
49 |
+
# Caller is expected to load this, or equivalent, as model name for now
|
50 |
+
# eg: pipe = StableDiffusionXL_T5Pipeline(SDXL_NAME)
|
51 |
+
SDXL_NAME = "stabilityai/stable-diffusion-xl-base-1.0"
|
52 |
+
|
53 |
+
|
54 |
+
class LinearWithDtype(nn.Linear):
|
55 |
+
@property
|
56 |
+
def dtype(self):
|
57 |
+
return self.weight.dtype
|
58 |
+
|
59 |
+
|
60 |
+
class StableDiffusionXL_T5Pipeline(StableDiffusionXLPipeline):
|
61 |
+
_expected_modules = [
|
62 |
+
"vae",
|
63 |
+
"unet",
|
64 |
+
"scheduler",
|
65 |
+
"tokenizer",
|
66 |
+
"image_encoder",
|
67 |
+
"feature_extractor",
|
68 |
+
"t5_encoder",
|
69 |
+
"t5_projection",
|
70 |
+
"t5_pooled_projection",
|
71 |
+
]
|
72 |
+
|
73 |
+
_optional_components = [
|
74 |
+
"image_encoder",
|
75 |
+
"feature_extractor",
|
76 |
+
"t5_encoder",
|
77 |
+
"t5_projection",
|
78 |
+
"t5_pooled_projection",
|
79 |
+
]
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
vae: AutoencoderKL,
|
84 |
+
unet: UNet2DConditionModel,
|
85 |
+
scheduler: KarrasDiffusionSchedulers,
|
86 |
+
tokenizer: CLIPTokenizer,
|
87 |
+
t5_encoder=None,
|
88 |
+
t5_projection=None,
|
89 |
+
t5_pooled_projection=None,
|
90 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
91 |
+
feature_extractor: CLIPImageProcessor = None,
|
92 |
+
force_zeros_for_empty_prompt: bool = True,
|
93 |
+
add_watermarker: Optional[bool] = None,
|
94 |
+
):
|
95 |
+
DiffusionPipeline.__init__(self)
|
96 |
+
|
97 |
+
if t5_encoder is None:
|
98 |
+
self.t5_encoder = T5EncoderModel.from_pretrained(T5_NAME, torch_dtype=unet.dtype)
|
99 |
+
else:
|
100 |
+
self.t5_encoder = t5_encoder
|
101 |
+
|
102 |
+
# ----- build T5 4096 => 2048 dim projection -----
|
103 |
+
if t5_projection is None:
|
104 |
+
self.t5_projection = LinearWithDtype(4096, 2048) # trainable
|
105 |
+
else:
|
106 |
+
self.t5_projection = t5_projection
|
107 |
+
self.t5_projection.to(dtype=unet.dtype)
|
108 |
+
# ----- build T5 4096 => 1280 dim projection -----
|
109 |
+
if t5_pooled_projection is None:
|
110 |
+
self.t5_pooled_projection = LinearWithDtype(4096, 1280) # trainable
|
111 |
+
else:
|
112 |
+
self.t5_pooled_projection = t5_pooled_projection
|
113 |
+
self.t5_pooled_projection.to(dtype=unet.dtype)
|
114 |
+
|
115 |
+
print("dtype of Linear is ", self.t5_projection.dtype)
|
116 |
+
|
117 |
+
self.register_modules(
|
118 |
+
vae=vae,
|
119 |
+
unet=unet,
|
120 |
+
scheduler=scheduler,
|
121 |
+
tokenizer=tokenizer,
|
122 |
+
t5_encoder=self.t5_encoder,
|
123 |
+
t5_projection=self.t5_projection,
|
124 |
+
t5_pooled_projection=self.t5_pooled_projection,
|
125 |
+
image_encoder=image_encoder,
|
126 |
+
feature_extractor=feature_extractor,
|
127 |
+
)
|
128 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
129 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
130 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
131 |
+
|
132 |
+
self.default_sample_size = (
|
133 |
+
self.unet.config.sample_size
|
134 |
+
if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size")
|
135 |
+
else 128
|
136 |
+
)
|
137 |
+
|
138 |
+
self.watermark = None
|
139 |
+
|
140 |
+
# Parts of original SDXL class complain if these attributes are not
|
141 |
+
# at least PRESENT
|
142 |
+
self.text_encoder = self.text_encoder_2 = None
|
143 |
+
|
144 |
+
# ------------------------------------------------------------------
|
145 |
+
# Encode a text prompt (T5-XXL + 4096→2048 projection)
|
146 |
+
# Returns exactly four tensors in the order SDXL’s __call__ expects.
|
147 |
+
# ------------------------------------------------------------------
|
148 |
+
def encode_prompt(
|
149 |
+
self,
|
150 |
+
prompt,
|
151 |
+
num_images_per_prompt: int = 1,
|
152 |
+
do_classifier_free_guidance: bool = True,
|
153 |
+
negative_prompt: str | None = None,
|
154 |
+
**_,
|
155 |
+
):
|
156 |
+
"""
|
157 |
+
Returns
|
158 |
+
-------
|
159 |
+
prompt_embeds : Tensor [B, T, 2048]
|
160 |
+
negative_prompt_embeds : Tensor [B, T, 2048] | None
|
161 |
+
pooled_prompt_embeds : Tensor [B, 1280]
|
162 |
+
negative_pooled_prompt_embeds: Tensor [B, 1280] | None
|
163 |
+
where B = batch * num_images_per_prompt
|
164 |
+
"""
|
165 |
+
|
166 |
+
# --- helper to tokenize on the pipeline’s device ----------------
|
167 |
+
def _tok(text: str):
|
168 |
+
tok_out = self.tokenizer(
|
169 |
+
text,
|
170 |
+
return_tensors="pt",
|
171 |
+
padding="max_length",
|
172 |
+
max_length=self.tokenizer.model_max_length,
|
173 |
+
truncation=True,
|
174 |
+
).to(self.device)
|
175 |
+
return tok_out.input_ids, tok_out.attention_mask
|
176 |
+
|
177 |
+
# ---------- positive stream -------------------------------------
|
178 |
+
ids, mask = _tok(prompt)
|
179 |
+
h_pos = self.t5_encoder(ids, attention_mask=mask).last_hidden_state # [b, T, 4096]
|
180 |
+
tok_pos = self.t5_projection(h_pos) # [b, T, 2048]
|
181 |
+
pool_pos = self.t5_pooled_projection(h_pos.mean(dim=1)) # [b, 1280]
|
182 |
+
|
183 |
+
# expand for multiple images per prompt
|
184 |
+
tok_pos = tok_pos.repeat_interleave(num_images_per_prompt, 0)
|
185 |
+
pool_pos = pool_pos.repeat_interleave(num_images_per_prompt, 0)
|
186 |
+
|
187 |
+
# ---------- negative / CFG stream --------------------------------
|
188 |
+
if do_classifier_free_guidance:
|
189 |
+
neg_text = "" if negative_prompt is None else negative_prompt
|
190 |
+
ids_n, mask_n = _tok(neg_text)
|
191 |
+
h_neg = self.t5_encoder(ids_n, attention_mask=mask_n).last_hidden_state
|
192 |
+
tok_neg = self.t5_projection(h_neg)
|
193 |
+
pool_neg = self.t5_pooled_projection(h_neg.mean(dim=1))
|
194 |
+
|
195 |
+
tok_neg = tok_neg.repeat_interleave(num_images_per_prompt, 0)
|
196 |
+
pool_neg = pool_neg.repeat_interleave(num_images_per_prompt, 0)
|
197 |
+
else:
|
198 |
+
tok_neg = pool_neg = None
|
199 |
+
|
200 |
+
# ----------------- final ordered return --------------------------
|
201 |
+
# 1) positive token embeddings
|
202 |
+
# 2) negative token embeddings (or None)
|
203 |
+
# 3) positive pooled embeddings
|
204 |
+
# 4) negative pooled embeddings (or None)
|
205 |
+
return tok_pos, tok_neg, pool_pos, pool_neg
|