Datasets:

ArXiv:
diffusers-benchmarking-bot commited on
Commit
a240ae1
·
verified ·
1 Parent(s): 83f803d

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. main/README.md +1 -2
  2. main/pipeline_stg_wan.py +661 -0
main/README.md CHANGED
@@ -10,7 +10,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
10
 
11
  | Example | Description | Code Example | Colab | Author |
12
  |:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
13
- |Spatiotemporal Skip Guidance (STG)|[Spatiotemporal Skip Guidance for Enhanced Video Diffusion Sampling](https://arxiv.org/abs/2411.18664) (CVPR 2025) enhances video diffusion models by generating a weaker model through layer skipping and using it as guidance, improving fidelity in models like HunyuanVideo, LTXVideo, and Mochi.|[Spatiotemporal Skip Guidance](#spatiotemporal-skip-guidance)|-|[Junha Hyung](https://junhahyung.github.io/), [Kinam Kim](https://kinam0252.github.io/)|
14
  |Adaptive Mask Inpainting|Adaptive Mask Inpainting algorithm from [Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models](https://github.com/snuvclab/coma) (ECCV '24, Oral) provides a way to insert human inside the scene image without altering the background, by inpainting with adapting mask.|[Adaptive Mask Inpainting](#adaptive-mask-inpainting)|-|[Hyeonwoo Kim](https://sshowbiz.xyz),[Sookwan Han](https://jellyheadandrew.github.io)|
15
  |Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/flux_with_cfg.ipynb)|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
16
  |Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/exx8/differential-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
@@ -124,7 +124,6 @@ pipe = pipe.to("cuda")
124
  #--------Option--------#
125
  prompt = "A close-up of a beautiful woman's face with colored powder exploding around her, creating an abstract splash of vibrant hues, realistic style."
126
  stg_applied_layers_idx = [34]
127
- stg_mode = "STG"
128
  stg_scale = 1.0 # 0.0 for CFG
129
  #----------------------#
130
 
 
10
 
11
  | Example | Description | Code Example | Colab | Author |
12
  |:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
13
+ |Spatiotemporal Skip Guidance (STG)|[Spatiotemporal Skip Guidance for Enhanced Video Diffusion Sampling](https://arxiv.org/abs/2411.18664) (CVPR 2025) enhances video diffusion models by generating a weaker model through layer skipping and using it as guidance, improving fidelity in models like HunyuanVideo, LTXVideo, and Mochi.|[Spatiotemporal Skip Guidance](#spatiotemporal-skip-guidance)|-|[Junha Hyung](https://junhahyung.github.io/), [Kinam Kim](https://kinam0252.github.io/), and [Ednaordinary](https://github.com/Ednaordinary)|
14
  |Adaptive Mask Inpainting|Adaptive Mask Inpainting algorithm from [Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models](https://github.com/snuvclab/coma) (ECCV '24, Oral) provides a way to insert human inside the scene image without altering the background, by inpainting with adapting mask.|[Adaptive Mask Inpainting](#adaptive-mask-inpainting)|-|[Hyeonwoo Kim](https://sshowbiz.xyz),[Sookwan Han](https://jellyheadandrew.github.io)|
15
  |Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/flux_with_cfg.ipynb)|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
16
  |Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/exx8/differential-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
 
124
  #--------Option--------#
125
  prompt = "A close-up of a beautiful woman's face with colored powder exploding around her, creating an abstract splash of vibrant hues, realistic style."
126
  stg_applied_layers_idx = [34]
 
127
  stg_scale = 1.0 # 0.0 for CFG
128
  #----------------------#
129
 
main/pipeline_stg_wan.py ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import html
16
+ import types
17
+ from typing import Any, Callable, Dict, List, Optional, Union
18
+
19
+ import ftfy
20
+ import regex as re
21
+ import torch
22
+ from transformers import AutoTokenizer, UMT5EncoderModel
23
+
24
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from diffusers.loaders import WanLoraLoaderMixin
26
+ from diffusers.models import AutoencoderKLWan, WanTransformer3DModel
27
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
28
+ from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput
29
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
30
+ from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
31
+ from diffusers.utils.torch_utils import randn_tensor
32
+ from diffusers.video_processor import VideoProcessor
33
+
34
+
35
+ if is_torch_xla_available():
36
+ import torch_xla.core.xla_model as xm
37
+
38
+ XLA_AVAILABLE = True
39
+ else:
40
+ XLA_AVAILABLE = False
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+
45
+ EXAMPLE_DOC_STRING = """
46
+ Examples:
47
+ ```python
48
+ >>> import torch
49
+ >>> from diffusers.utils import export_to_video
50
+ >>> from diffusers import AutoencoderKLWan
51
+ >>> from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
52
+ >>> from examples.community.pipeline_stg_wan import WanSTGPipeline
53
+
54
+ >>> # Available models: Wan-AI/Wan2.1-T2V-14B-Diffusers, Wan-AI/Wan2.1-T2V-1.3B-Diffusers
55
+ >>> model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
56
+ >>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
57
+ >>> pipe = WanSTGPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
58
+ >>> flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P
59
+ >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
60
+ >>> pipe.to("cuda")
61
+
62
+ >>> prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
63
+ >>> negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
64
+
65
+ >>> # Configure STG mode options
66
+ >>> stg_applied_layers_idx = [8] # Layer indices from 0 to 39 for 14b or 0 to 29 for 1.3b
67
+ >>> stg_scale = 1.0 # Set 0.0 for CFG
68
+
69
+ >>> output = pipe(
70
+ ... prompt=prompt,
71
+ ... negative_prompt=negative_prompt,
72
+ ... height=720,
73
+ ... width=1280,
74
+ ... num_frames=81,
75
+ ... guidance_scale=5.0,
76
+ ... stg_applied_layers_idx=stg_applied_layers_idx,
77
+ ... stg_scale=stg_scale,
78
+ ... ).frames[0]
79
+ >>> export_to_video(output, "output.mp4", fps=16)
80
+ ```
81
+ """
82
+
83
+
84
+ def basic_clean(text):
85
+ text = ftfy.fix_text(text)
86
+ text = html.unescape(html.unescape(text))
87
+ return text.strip()
88
+
89
+
90
+ def whitespace_clean(text):
91
+ text = re.sub(r"\s+", " ", text)
92
+ text = text.strip()
93
+ return text
94
+
95
+
96
+ def prompt_clean(text):
97
+ text = whitespace_clean(basic_clean(text))
98
+ return text
99
+
100
+
101
+ def forward_with_stg(
102
+ self,
103
+ hidden_states: torch.Tensor,
104
+ encoder_hidden_states: torch.Tensor,
105
+ temb: torch.Tensor,
106
+ rotary_emb: torch.Tensor,
107
+ ) -> torch.Tensor:
108
+ return hidden_states
109
+
110
+
111
+ def forward_without_stg(
112
+ self,
113
+ hidden_states: torch.Tensor,
114
+ encoder_hidden_states: torch.Tensor,
115
+ temb: torch.Tensor,
116
+ rotary_emb: torch.Tensor,
117
+ ) -> torch.Tensor:
118
+ shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
119
+ self.scale_shift_table + temb.float()
120
+ ).chunk(6, dim=1)
121
+
122
+ # 1. Self-attention
123
+ norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
124
+ attn_output = self.attn1(hidden_states=norm_hidden_states, rotary_emb=rotary_emb)
125
+ hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states)
126
+
127
+ # 2. Cross-attention
128
+ norm_hidden_states = self.norm2(hidden_states.float()).type_as(hidden_states)
129
+ attn_output = self.attn2(hidden_states=norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
130
+ hidden_states = hidden_states + attn_output
131
+
132
+ # 3. Feed-forward
133
+ norm_hidden_states = (self.norm3(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(hidden_states)
134
+ ff_output = self.ffn(norm_hidden_states)
135
+ hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
136
+
137
+ return hidden_states
138
+
139
+
140
+ class WanSTGPipeline(DiffusionPipeline, WanLoraLoaderMixin):
141
+ r"""
142
+ Pipeline for text-to-video generation using Wan.
143
+
144
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
145
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
146
+
147
+ Args:
148
+ tokenizer ([`T5Tokenizer`]):
149
+ Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
150
+ specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
151
+ text_encoder ([`T5EncoderModel`]):
152
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
153
+ the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
154
+ transformer ([`WanTransformer3DModel`]):
155
+ Conditional Transformer to denoise the input latents.
156
+ scheduler ([`UniPCMultistepScheduler`]):
157
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
158
+ vae ([`AutoencoderKLWan`]):
159
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
160
+ """
161
+
162
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
163
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
164
+
165
+ def __init__(
166
+ self,
167
+ tokenizer: AutoTokenizer,
168
+ text_encoder: UMT5EncoderModel,
169
+ transformer: WanTransformer3DModel,
170
+ vae: AutoencoderKLWan,
171
+ scheduler: FlowMatchEulerDiscreteScheduler,
172
+ ):
173
+ super().__init__()
174
+
175
+ self.register_modules(
176
+ vae=vae,
177
+ text_encoder=text_encoder,
178
+ tokenizer=tokenizer,
179
+ transformer=transformer,
180
+ scheduler=scheduler,
181
+ )
182
+
183
+ self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
184
+ self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
185
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
186
+
187
+ def _get_t5_prompt_embeds(
188
+ self,
189
+ prompt: Union[str, List[str]] = None,
190
+ num_videos_per_prompt: int = 1,
191
+ max_sequence_length: int = 226,
192
+ device: Optional[torch.device] = None,
193
+ dtype: Optional[torch.dtype] = None,
194
+ ):
195
+ device = device or self._execution_device
196
+ dtype = dtype or self.text_encoder.dtype
197
+
198
+ prompt = [prompt] if isinstance(prompt, str) else prompt
199
+ prompt = [prompt_clean(u) for u in prompt]
200
+ batch_size = len(prompt)
201
+
202
+ text_inputs = self.tokenizer(
203
+ prompt,
204
+ padding="max_length",
205
+ max_length=max_sequence_length,
206
+ truncation=True,
207
+ add_special_tokens=True,
208
+ return_attention_mask=True,
209
+ return_tensors="pt",
210
+ )
211
+ text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
212
+ seq_lens = mask.gt(0).sum(dim=1).long()
213
+
214
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
215
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
216
+ prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
217
+ prompt_embeds = torch.stack(
218
+ [torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
219
+ )
220
+
221
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
222
+ _, seq_len, _ = prompt_embeds.shape
223
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
224
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
225
+
226
+ return prompt_embeds
227
+
228
+ def encode_prompt(
229
+ self,
230
+ prompt: Union[str, List[str]],
231
+ negative_prompt: Optional[Union[str, List[str]]] = None,
232
+ do_classifier_free_guidance: bool = True,
233
+ num_videos_per_prompt: int = 1,
234
+ prompt_embeds: Optional[torch.Tensor] = None,
235
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
236
+ max_sequence_length: int = 226,
237
+ device: Optional[torch.device] = None,
238
+ dtype: Optional[torch.dtype] = None,
239
+ ):
240
+ r"""
241
+ Encodes the prompt into text encoder hidden states.
242
+
243
+ Args:
244
+ prompt (`str` or `List[str]`, *optional*):
245
+ prompt to be encoded
246
+ negative_prompt (`str` or `List[str]`, *optional*):
247
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
248
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
249
+ less than `1`).
250
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
251
+ Whether to use classifier free guidance or not.
252
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
253
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
254
+ prompt_embeds (`torch.Tensor`, *optional*):
255
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
256
+ provided, text embeddings will be generated from `prompt` input argument.
257
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
258
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
259
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
260
+ argument.
261
+ device: (`torch.device`, *optional*):
262
+ torch device
263
+ dtype: (`torch.dtype`, *optional*):
264
+ torch dtype
265
+ """
266
+ device = device or self._execution_device
267
+
268
+ prompt = [prompt] if isinstance(prompt, str) else prompt
269
+ if prompt is not None:
270
+ batch_size = len(prompt)
271
+ else:
272
+ batch_size = prompt_embeds.shape[0]
273
+
274
+ if prompt_embeds is None:
275
+ prompt_embeds = self._get_t5_prompt_embeds(
276
+ prompt=prompt,
277
+ num_videos_per_prompt=num_videos_per_prompt,
278
+ max_sequence_length=max_sequence_length,
279
+ device=device,
280
+ dtype=dtype,
281
+ )
282
+
283
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
284
+ negative_prompt = negative_prompt or ""
285
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
286
+
287
+ if prompt is not None and type(prompt) is not type(negative_prompt):
288
+ raise TypeError(
289
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
290
+ f" {type(prompt)}."
291
+ )
292
+ elif batch_size != len(negative_prompt):
293
+ raise ValueError(
294
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
295
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
296
+ " the batch size of `prompt`."
297
+ )
298
+
299
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
300
+ prompt=negative_prompt,
301
+ num_videos_per_prompt=num_videos_per_prompt,
302
+ max_sequence_length=max_sequence_length,
303
+ device=device,
304
+ dtype=dtype,
305
+ )
306
+
307
+ return prompt_embeds, negative_prompt_embeds
308
+
309
+ def check_inputs(
310
+ self,
311
+ prompt,
312
+ negative_prompt,
313
+ height,
314
+ width,
315
+ prompt_embeds=None,
316
+ negative_prompt_embeds=None,
317
+ callback_on_step_end_tensor_inputs=None,
318
+ ):
319
+ if height % 16 != 0 or width % 16 != 0:
320
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
321
+
322
+ if callback_on_step_end_tensor_inputs is not None and not all(
323
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
324
+ ):
325
+ raise ValueError(
326
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
327
+ )
328
+
329
+ if prompt is not None and prompt_embeds is not None:
330
+ raise ValueError(
331
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
332
+ " only forward one of the two."
333
+ )
334
+ elif negative_prompt is not None and negative_prompt_embeds is not None:
335
+ raise ValueError(
336
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
337
+ " only forward one of the two."
338
+ )
339
+ elif prompt is None and prompt_embeds is None:
340
+ raise ValueError(
341
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
342
+ )
343
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
344
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
345
+ elif negative_prompt is not None and (
346
+ not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
347
+ ):
348
+ raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
349
+
350
+ def prepare_latents(
351
+ self,
352
+ batch_size: int,
353
+ num_channels_latents: int = 16,
354
+ height: int = 480,
355
+ width: int = 832,
356
+ num_frames: int = 81,
357
+ dtype: Optional[torch.dtype] = None,
358
+ device: Optional[torch.device] = None,
359
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
360
+ latents: Optional[torch.Tensor] = None,
361
+ ) -> torch.Tensor:
362
+ if latents is not None:
363
+ return latents.to(device=device, dtype=dtype)
364
+
365
+ num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
366
+ shape = (
367
+ batch_size,
368
+ num_channels_latents,
369
+ num_latent_frames,
370
+ int(height) // self.vae_scale_factor_spatial,
371
+ int(width) // self.vae_scale_factor_spatial,
372
+ )
373
+ if isinstance(generator, list) and len(generator) != batch_size:
374
+ raise ValueError(
375
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
376
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
377
+ )
378
+
379
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
380
+ return latents
381
+
382
+ @property
383
+ def guidance_scale(self):
384
+ return self._guidance_scale
385
+
386
+ @property
387
+ def do_classifier_free_guidance(self):
388
+ return self._guidance_scale > 1.0
389
+
390
+ @property
391
+ def do_spatio_temporal_guidance(self):
392
+ return self._stg_scale > 0.0
393
+
394
+ @property
395
+ def num_timesteps(self):
396
+ return self._num_timesteps
397
+
398
+ @property
399
+ def current_timestep(self):
400
+ return self._current_timestep
401
+
402
+ @property
403
+ def interrupt(self):
404
+ return self._interrupt
405
+
406
+ @property
407
+ def attention_kwargs(self):
408
+ return self._attention_kwargs
409
+
410
+ @torch.no_grad()
411
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
412
+ def __call__(
413
+ self,
414
+ prompt: Union[str, List[str]] = None,
415
+ negative_prompt: Union[str, List[str]] = None,
416
+ height: int = 480,
417
+ width: int = 832,
418
+ num_frames: int = 81,
419
+ num_inference_steps: int = 50,
420
+ guidance_scale: float = 5.0,
421
+ num_videos_per_prompt: Optional[int] = 1,
422
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
423
+ latents: Optional[torch.Tensor] = None,
424
+ prompt_embeds: Optional[torch.Tensor] = None,
425
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
426
+ output_type: Optional[str] = "np",
427
+ return_dict: bool = True,
428
+ attention_kwargs: Optional[Dict[str, Any]] = None,
429
+ callback_on_step_end: Optional[
430
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
431
+ ] = None,
432
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
433
+ max_sequence_length: int = 512,
434
+ stg_applied_layers_idx: Optional[List[int]] = [3, 8, 16],
435
+ stg_scale: Optional[float] = 0.0,
436
+ ):
437
+ r"""
438
+ The call function to the pipeline for generation.
439
+
440
+ Args:
441
+ prompt (`str` or `List[str]`, *optional*):
442
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
443
+ instead.
444
+ height (`int`, defaults to `480`):
445
+ The height in pixels of the generated image.
446
+ width (`int`, defaults to `832`):
447
+ The width in pixels of the generated image.
448
+ num_frames (`int`, defaults to `81`):
449
+ The number of frames in the generated video.
450
+ num_inference_steps (`int`, defaults to `50`):
451
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
452
+ expense of slower inference.
453
+ guidance_scale (`float`, defaults to `5.0`):
454
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
455
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
456
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
457
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
458
+ usually at the expense of lower image quality.
459
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
460
+ The number of images to generate per prompt.
461
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
462
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
463
+ generation deterministic.
464
+ latents (`torch.Tensor`, *optional*):
465
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
466
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
467
+ tensor is generated by sampling using the supplied random `generator`.
468
+ prompt_embeds (`torch.Tensor`, *optional*):
469
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
470
+ provided, text embeddings are generated from the `prompt` input argument.
471
+ output_type (`str`, *optional*, defaults to `"pil"`):
472
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
473
+ return_dict (`bool`, *optional*, defaults to `True`):
474
+ Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
475
+ attention_kwargs (`dict`, *optional*):
476
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
477
+ `self.processor` in
478
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
479
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
480
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
481
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
482
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
483
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
484
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
485
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
486
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
487
+ `._callback_tensor_inputs` attribute of your pipeline class.
488
+ autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
489
+ The dtype to use for the torch.amp.autocast.
490
+
491
+ Examples:
492
+
493
+ Returns:
494
+ [`~WanPipelineOutput`] or `tuple`:
495
+ If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
496
+ the first element is a list with the generated images and the second element is a list of `bool`s
497
+ indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
498
+ """
499
+
500
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
501
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
502
+
503
+ # 1. Check inputs. Raise error if not correct
504
+ self.check_inputs(
505
+ prompt,
506
+ negative_prompt,
507
+ height,
508
+ width,
509
+ prompt_embeds,
510
+ negative_prompt_embeds,
511
+ callback_on_step_end_tensor_inputs,
512
+ )
513
+
514
+ self._guidance_scale = guidance_scale
515
+ self._stg_scale = stg_scale
516
+ self._attention_kwargs = attention_kwargs
517
+ self._current_timestep = None
518
+ self._interrupt = False
519
+
520
+ device = self._execution_device
521
+
522
+ # 2. Define call parameters
523
+ if prompt is not None and isinstance(prompt, str):
524
+ batch_size = 1
525
+ elif prompt is not None and isinstance(prompt, list):
526
+ batch_size = len(prompt)
527
+ else:
528
+ batch_size = prompt_embeds.shape[0]
529
+
530
+ # 3. Encode input prompt
531
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
532
+ prompt=prompt,
533
+ negative_prompt=negative_prompt,
534
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
535
+ num_videos_per_prompt=num_videos_per_prompt,
536
+ prompt_embeds=prompt_embeds,
537
+ negative_prompt_embeds=negative_prompt_embeds,
538
+ max_sequence_length=max_sequence_length,
539
+ device=device,
540
+ )
541
+
542
+ transformer_dtype = self.transformer.dtype
543
+ prompt_embeds = prompt_embeds.to(transformer_dtype)
544
+ if negative_prompt_embeds is not None:
545
+ negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
546
+
547
+ # 4. Prepare timesteps
548
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
549
+ timesteps = self.scheduler.timesteps
550
+
551
+ # 5. Prepare latent variables
552
+ num_channels_latents = self.transformer.config.in_channels
553
+ latents = self.prepare_latents(
554
+ batch_size * num_videos_per_prompt,
555
+ num_channels_latents,
556
+ height,
557
+ width,
558
+ num_frames,
559
+ torch.float32,
560
+ device,
561
+ generator,
562
+ latents,
563
+ )
564
+
565
+ # 6. Denoising loop
566
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
567
+ self._num_timesteps = len(timesteps)
568
+
569
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
570
+ for i, t in enumerate(timesteps):
571
+ if self.interrupt:
572
+ continue
573
+
574
+ self._current_timestep = t
575
+ latent_model_input = latents.to(transformer_dtype)
576
+ timestep = t.expand(latents.shape[0])
577
+
578
+ if self.do_spatio_temporal_guidance:
579
+ for idx, block in enumerate(self.transformer.blocks):
580
+ block.forward = types.MethodType(forward_without_stg, block)
581
+
582
+ noise_pred = self.transformer(
583
+ hidden_states=latent_model_input,
584
+ timestep=timestep,
585
+ encoder_hidden_states=prompt_embeds,
586
+ attention_kwargs=attention_kwargs,
587
+ return_dict=False,
588
+ )[0]
589
+
590
+ if self.do_classifier_free_guidance:
591
+ noise_uncond = self.transformer(
592
+ hidden_states=latent_model_input,
593
+ timestep=timestep,
594
+ encoder_hidden_states=negative_prompt_embeds,
595
+ attention_kwargs=attention_kwargs,
596
+ return_dict=False,
597
+ )[0]
598
+ if self.do_spatio_temporal_guidance:
599
+ for idx, block in enumerate(self.transformer.blocks):
600
+ if idx in stg_applied_layers_idx:
601
+ block.forward = types.MethodType(forward_with_stg, block)
602
+ noise_perturb = self.transformer(
603
+ hidden_states=latent_model_input,
604
+ timestep=timestep,
605
+ encoder_hidden_states=prompt_embeds,
606
+ attention_kwargs=attention_kwargs,
607
+ return_dict=False,
608
+ )[0]
609
+ noise_pred = (
610
+ noise_uncond
611
+ + guidance_scale * (noise_pred - noise_uncond)
612
+ + self._stg_scale * (noise_pred - noise_perturb)
613
+ )
614
+ else:
615
+ noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
616
+
617
+ # compute the previous noisy sample x_t -> x_t-1
618
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
619
+
620
+ if callback_on_step_end is not None:
621
+ callback_kwargs = {}
622
+ for k in callback_on_step_end_tensor_inputs:
623
+ callback_kwargs[k] = locals()[k]
624
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
625
+
626
+ latents = callback_outputs.pop("latents", latents)
627
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
628
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
629
+
630
+ # call the callback, if provided
631
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
632
+ progress_bar.update()
633
+
634
+ if XLA_AVAILABLE:
635
+ xm.mark_step()
636
+
637
+ self._current_timestep = None
638
+
639
+ if not output_type == "latent":
640
+ latents = latents.to(self.vae.dtype)
641
+ latents_mean = (
642
+ torch.tensor(self.vae.config.latents_mean)
643
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
644
+ .to(latents.device, latents.dtype)
645
+ )
646
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
647
+ latents.device, latents.dtype
648
+ )
649
+ latents = latents / latents_std + latents_mean
650
+ video = self.vae.decode(latents, return_dict=False)[0]
651
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
652
+ else:
653
+ video = latents
654
+
655
+ # Offload all models
656
+ self.maybe_free_model_hooks()
657
+
658
+ if not return_dict:
659
+ return (video,)
660
+
661
+ return WanPipelineOutput(frames=video)