Upload folder using huggingface_hub
Browse files
main/pipeline_flux_differential_img2img.py
CHANGED
@@ -875,10 +875,10 @@ class FluxDifferentialImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
|
|
875 |
image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor)
|
876 |
mu = calculate_shift(
|
877 |
image_seq_len,
|
878 |
-
self.scheduler.config.base_image_seq_len,
|
879 |
-
self.scheduler.config.max_image_seq_len,
|
880 |
-
self.scheduler.config.base_shift,
|
881 |
-
self.scheduler.config.max_shift,
|
882 |
)
|
883 |
timesteps, num_inference_steps = retrieve_timesteps(
|
884 |
self.scheduler,
|
|
|
875 |
image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor)
|
876 |
mu = calculate_shift(
|
877 |
image_seq_len,
|
878 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
879 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
880 |
+
self.scheduler.config.get("base_shift", 0.5),
|
881 |
+
self.scheduler.config.get("max_shift", 1.16),
|
882 |
)
|
883 |
timesteps, num_inference_steps = retrieve_timesteps(
|
884 |
self.scheduler,
|
main/pipeline_flux_rf_inversion.py
CHANGED
@@ -820,10 +820,10 @@ class RFInversionFluxPipeline(
|
|
820 |
image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
|
821 |
mu = calculate_shift(
|
822 |
image_seq_len,
|
823 |
-
self.scheduler.config.base_image_seq_len,
|
824 |
-
self.scheduler.config.max_image_seq_len,
|
825 |
-
self.scheduler.config.base_shift,
|
826 |
-
self.scheduler.config.max_shift,
|
827 |
)
|
828 |
timesteps, num_inference_steps = retrieve_timesteps(
|
829 |
self.scheduler,
|
@@ -990,10 +990,10 @@ class RFInversionFluxPipeline(
|
|
990 |
image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
|
991 |
mu = calculate_shift(
|
992 |
image_seq_len,
|
993 |
-
self.scheduler.config.base_image_seq_len,
|
994 |
-
self.scheduler.config.max_image_seq_len,
|
995 |
-
self.scheduler.config.base_shift,
|
996 |
-
self.scheduler.config.max_shift,
|
997 |
)
|
998 |
timesteps, num_inversion_steps = retrieve_timesteps(
|
999 |
self.scheduler,
|
|
|
820 |
image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
|
821 |
mu = calculate_shift(
|
822 |
image_seq_len,
|
823 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
824 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
825 |
+
self.scheduler.config.get("base_shift", 0.5),
|
826 |
+
self.scheduler.config.get("max_shift", 1.16),
|
827 |
)
|
828 |
timesteps, num_inference_steps = retrieve_timesteps(
|
829 |
self.scheduler,
|
|
|
990 |
image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
|
991 |
mu = calculate_shift(
|
992 |
image_seq_len,
|
993 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
994 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
995 |
+
self.scheduler.config.get("base_shift", 0.5),
|
996 |
+
self.scheduler.config.get("max_shift", 1.16),
|
997 |
)
|
998 |
timesteps, num_inversion_steps = retrieve_timesteps(
|
999 |
self.scheduler,
|
main/pipeline_flux_with_cfg.py
CHANGED
@@ -64,6 +64,7 @@ EXAMPLE_DOC_STRING = """
|
|
64 |
"""
|
65 |
|
66 |
|
|
|
67 |
def calculate_shift(
|
68 |
image_seq_len,
|
69 |
base_seq_len: int = 256,
|
@@ -755,10 +756,10 @@ class FluxCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixi
|
|
755 |
image_seq_len = latents.shape[1]
|
756 |
mu = calculate_shift(
|
757 |
image_seq_len,
|
758 |
-
self.scheduler.config.base_image_seq_len,
|
759 |
-
self.scheduler.config.max_image_seq_len,
|
760 |
-
self.scheduler.config.base_shift,
|
761 |
-
self.scheduler.config.max_shift,
|
762 |
)
|
763 |
timesteps, num_inference_steps = retrieve_timesteps(
|
764 |
self.scheduler,
|
|
|
64 |
"""
|
65 |
|
66 |
|
67 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
68 |
def calculate_shift(
|
69 |
image_seq_len,
|
70 |
base_seq_len: int = 256,
|
|
|
756 |
image_seq_len = latents.shape[1]
|
757 |
mu = calculate_shift(
|
758 |
image_seq_len,
|
759 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
760 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
761 |
+
self.scheduler.config.get("base_shift", 0.5),
|
762 |
+
self.scheduler.config.get("max_shift", 1.16),
|
763 |
)
|
764 |
timesteps, num_inference_steps = retrieve_timesteps(
|
765 |
self.scheduler,
|