paul-english commited on
Commit
f3b449a
·
verified ·
1 Parent(s): ab752e6

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +64 -0
  2. data/train.parquet +3 -0
  3. data/val.parquet +3 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pretty_name: "Acevedo"
5
+ tags:
6
+ - digital pathology
7
+ - peripheral blood smear
8
+ task_categories:
9
+ - image-classification
10
+ ---
11
+ # acevedo
12
+
13
+ ## Dataset Description
14
+
15
+ Source: https://www.sciencedirect.com/science/article/pii/S2352340920303681
16
+ Source Data: https://data.mendeley.com/datasets/snkd93bnjr/1
17
+
18
+ ## Dataset Structure
19
+
20
+ ### Data Fields
21
+
22
+ - `image`: PIL Image
23
+ - `label`: Integer label
24
+ - `metadata`: Dictionary of metadata
25
+
26
+ ### Data Splits
27
+ | Split | Size |
28
+ |-------|------|
29
+ | train | 0 |
30
+
31
+ ## Usage
32
+
33
+ ```python
34
+ from datasets import load_dataset
35
+
36
+ dataset = load_dataset("digipath/acevedo")
37
+
38
+ ```
39
+
40
+ ## License
41
+
42
+ CC-BY-4.0
43
+
44
+ ## Citation
45
+
46
+ If you use this dataset, please cite:
47
+ ```bibtex
48
+ @article{acevedo_dataset_2020,
49
+ title = {A dataset of microscopic peripheral blood cell images for development of automatic recognition systems},
50
+ volume = {30},
51
+ issn = {2352-3409},
52
+ url = {https://www.sciencedirect.com/science/article/pii/S2352340920303681},
53
+ doi = {10.1016/j.dib.2020.105474},
54
+ abstract = {This article makes available a dataset that was used for the development of an automatic recognition system of peripheral blood cell images using convolutional neural networks [1]. The dataset contains a total of 17,092 images of individual normal cells, which were acquired using the analyzer CellaVision DM96 in the Core Laboratory at the Hospital Clinic of Barcelona. The dataset is organized in the following eight groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts and platelets or thrombocytes. The size of the images is 360 × 363 pixels, in format jpg, and they were annotated by expert clinical pathologists. The images were captured from individuals without infection, hematologic or oncologic disease and free of any pharmacologic treatment at the moment of blood collection. This high-quality labelled dataset may be used to train and test machine learning and deep learning models to recognize different types of normal peripheral blood cells. To our knowledge, this is the first publicly available set with large numbers of normal peripheral blood cells, so that it is expected to be a canonical dataset for model benchmarking.},
55
+ urldate = {2025-07-17},
56
+ journal = {Data in Brief},
57
+ author = {Acevedo, Andrea and Merino, Anna and Alférez, Santiago and Molina, Ángel and Boldú, Laura and Rodellar, José},
58
+ month = jun,
59
+ year = {2020},
60
+ keywords = {Machine learning, Deep learning, Blood cell automatic recognition, Blood cell images, Blood cell morphology, Hematological diagnosis},
61
+ pages = {105474},
62
+ }
63
+ ```
64
+
data/train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4660a5cae1db7cdfdef76b3f79595086687bb293b9ec39dc54e22927b14906a
3
+ size 2013332091
data/val.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4660a5cae1db7cdfdef76b3f79595086687bb293b9ec39dc54e22927b14906a
3
+ size 2013332091