File size: 1,331 Bytes
a0dcd92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1c5b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
dataset_info:
  features:
  - name: utterance_ID
    dtype: int64
  - name: text
    dtype: string
  - name: speaker
    dtype: string
  - name: emotion
    dtype: string
  - name: video_name
    dtype: string
  splits:
  - name: train
    num_bytes: 1198989.1453851238
    num_examples: 12529
  - name: test
    num_bytes: 104309.85461487627
    num_examples: 1090
  download_size: 614184
  dataset_size: 1303299.0
---
# Dataset Card for "SemEval_traindata_emotions"

Как был получен

```python
from datasets import load_dataset
import datasets
from torchvision.io import read_video
import json
import torch
import os
from torch.utils.data import Dataset, DataLoader
import tqdm

dataset_path = "./SemEval-2024_Task3/training_data/Subtask_2_train.json"


dataset = json.loads(open(dataset_path).read())
print(len(dataset))

all_conversations = []


for item in dataset:
    all_conversations.extend(item["conversation"])
print(len(all_conversations))

all_data = datasets.Dataset.from_list(all_conversations)
all_data = all_data.train_test_split(
    test_size=0.08,
    seed=42,
)

all_data.push_to_hub(
    "dim/SemEval_training_data_emotions",
    token=open("./hf_token").read(),
)
```