Datasets:

Languages:
English
License:
sanchit-gandhi commited on
Commit
3144062
·
1 Parent(s): 693cf23

file ids - transcriptions

Browse files
Files changed (1) hide show
  1. tedlium.py +9 -12
tedlium.py CHANGED
@@ -13,7 +13,7 @@
13
  # limitations under the License.
14
 
15
  """TED-LIUM speech recognition dataset."""
16
-
17
  import os
18
  import re
19
  from collections import defaultdict
@@ -31,8 +31,8 @@ _DL_URL = "https://huggingface.co/datasets/LIUM/tedlium/resolve/main/"
31
 
32
  _LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
33
 
34
- _WHISPER_TRANSCRIPT_URL = "https://huggingface.co/datasets/distil-whisper/tedlium/resolve/main/transcription_data/greedy_search/"
35
- _WHISPER_TRANSCRIPT_URLs = _WHISPER_TRANSCRIPT_URL + "/{split}-transcription.txt"
36
 
37
 
38
  class TedliumReleaseConfig(datasets.BuilderConfig):
@@ -271,12 +271,11 @@ class TedLium(datasets.GeneratorBasedBuilder):
271
  return splits
272
 
273
  def _generate_examples(self, filepath, local_extracted_archive, split_path, whisper_transcript):
274
- whisper_transcripts = []
275
-
276
  with open(whisper_transcript, encoding="utf-8") as f:
277
- for row in f:
278
- whisper_transcripts.append(row.rstrip("\n"))
279
- idx = 0
280
 
281
  """Generate examples from a TED-LIUM stm file."""
282
  if local_extracted_archive:
@@ -308,10 +307,9 @@ class TedLium(datasets.GeneratorBasedBuilder):
308
  "gender": _parse_gender(label),
309
  "file": audio_file,
310
  "id": key,
311
- "whisper_transcript": whisper_transcripts[idx]
312
  }
313
  yield key, example
314
- idx += 1
315
 
316
  else:
317
  audio_data = {}
@@ -359,7 +357,7 @@ class TedLium(datasets.GeneratorBasedBuilder):
359
  audio = {"path": transcript["file"], "array": samples, "sampling_rate": sampling_rate}
360
  key = transcript["id"]
361
  transcript_text = transcript["text"]
362
- whisper_transcription = whisper_transcripts[idx] if transcript_text != "ignore_time_segment_in_scoring" else "ignore_time_segment_in_scoring"
363
  yield key, {
364
  "audio": audio,
365
  "text": transcript_text,
@@ -369,7 +367,6 @@ class TedLium(datasets.GeneratorBasedBuilder):
369
  "id": transcript["id"],
370
  "whisper_transcript": whisper_transcription
371
  }
372
- idx += 1
373
 
374
  audio_data = {}
375
  transcripts = defaultdict(list)
 
13
  # limitations under the License.
14
 
15
  """TED-LIUM speech recognition dataset."""
16
+ import csv
17
  import os
18
  import re
19
  from collections import defaultdict
 
31
 
32
  _LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
33
 
34
+ _WHISPER_TRANSCRIPT_URL = "https://huggingface.co/datasets/distil-whisper/whisper_transcriptions_greedy/resolve/main/tedlium"
35
+ _WHISPER_TRANSCRIPT_URLs = _WHISPER_TRANSCRIPT_URL + "/{split}-transcription.csv"
36
 
37
 
38
  class TedliumReleaseConfig(datasets.BuilderConfig):
 
271
  return splits
272
 
273
  def _generate_examples(self, filepath, local_extracted_archive, split_path, whisper_transcript):
274
+ whisper_transcriptions = dict()
 
275
  with open(whisper_transcript, encoding="utf-8") as f:
276
+ reader = csv.DictReader(f, delimiter=",", quoting=csv.QUOTE_NONE)
277
+ for line in reader:
278
+ whisper_transcriptions[line["file_id"]] = line["whisper_transcript"]
279
 
280
  """Generate examples from a TED-LIUM stm file."""
281
  if local_extracted_archive:
 
307
  "gender": _parse_gender(label),
308
  "file": audio_file,
309
  "id": key,
310
+ "whisper_transcript": whisper_transcriptions.get(key, None)
311
  }
312
  yield key, example
 
313
 
314
  else:
315
  audio_data = {}
 
357
  audio = {"path": transcript["file"], "array": samples, "sampling_rate": sampling_rate}
358
  key = transcript["id"]
359
  transcript_text = transcript["text"]
360
+ whisper_transcription = whisper_transcriptions.get(key, None) if transcript_text != "ignore_time_segment_in_scoring" else "ignore_time_segment_in_scoring"
361
  yield key, {
362
  "audio": audio,
363
  "text": transcript_text,
 
367
  "id": transcript["id"],
368
  "whisper_transcript": whisper_transcription
369
  }
 
370
 
371
  audio_data = {}
372
  transcripts = defaultdict(list)