modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
WikinewsSum/bert2bert-multi-fr-wiki-news
2020-08-11T09:05:51.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
WikinewsSum
9
transformers
WikinewsSum/t5-base-multi-combine-wiki-news
2020-07-01T08:43:13.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
WikinewsSum
13
transformers
WikinewsSum/t5-base-multi-de-wiki-news
2020-07-01T08:29:08.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
WikinewsSum
17
transformers
WikinewsSum/t5-base-multi-en-wiki-news
2020-07-01T08:32:21.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
WikinewsSum
17
transformers
WikinewsSum/t5-base-multi-fr-wiki-news
2020-07-01T08:36:23.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
WikinewsSum
18
transformers
WikinewsSum/t5-base-with-title-multi-de-wiki-news
2020-07-01T08:30:44.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
WikinewsSum
23
transformers
WikinewsSum/t5-base-with-title-multi-en-wiki-news
2020-07-01T08:33:48.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
WikinewsSum
20
transformers
WikinewsSum/t5-base-with-title-multi-fr-wiki-news
2020-07-01T08:39:51.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
WikinewsSum
15
transformers
Wintermute/Wintermute
2021-05-21T11:40:58.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json", "vocab.txt" ]
Wintermute
66
transformers
Wintermute/Wintermute_extended
2021-05-21T11:42:01.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json", "vocab.txt" ]
Wintermute
17
transformers
Wonjun/KPTBert
2021-05-19T11:33:17.000Z
[ "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json" ]
Wonjun
7
transformers
Xia/albert
2021-04-28T17:45:16.000Z
[]
[ ".gitattributes" ]
Xia
0
XiangPan/roberta_squad1_2epoch
2021-04-27T01:57:07.000Z
[]
[ ".gitattributes" ]
XiangPan
0
Xiaomaxiang/T5-base-question-generation-squad
2021-05-11T16:42:26.000Z
[]
[ ".gitattributes", "README.md" ]
Xiaomaxiang
0
A
XiaoqiJiao/2nd_General_TinyBERT_6L_768D
2020-09-02T03:03:02.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tinybert_overview.png", "vocab.txt" ]
XiaoqiJiao
22
transformers
XiaoqiJiao/TinyBERT_General_4L_312D
2020-09-02T03:37:19.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tinybert_overview.png", "vocab.txt" ]
XiaoqiJiao
17
transformers
XiaoqiJiao/TinyBERT_General_6L_768D
2020-09-02T03:40:56.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tinybert_overview.png", "vocab.txt" ]
XiaoqiJiao
19
transformers
XxProKillerxX/Meh
2021-04-15T21:38:50.000Z
[]
[ ".gitattributes" ]
XxProKillerxX
0
YSKartal/berturk-social-5m
2021-05-20T12:32:31.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
YSKartal
26
transformers
YacShin/LocationAddressV1
2021-02-01T08:22:16.000Z
[]
[ ".gitattributes" ]
YacShin
0
Yanzhu/bertweetfr-base
2021-06-13T07:20:37.000Z
[ "pytorch", "camembert", "masked-lm", "fr", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json" ]
Yanzhu
25
transformers
--- language: "fr" --- Domain-adaptive pretraining of camembert-base using 15 GB of French Tweets
YituTech/conv-bert-base
2021-02-24T11:26:14.000Z
[ "pytorch", "tf", "convbert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tf_model.h5", "vocab.txt" ]
YituTech
1,460
transformers
YituTech/conv-bert-medium-small
2021-02-24T11:24:27.000Z
[ "pytorch", "tf", "convbert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tf_model.h5", "vocab.txt" ]
YituTech
236
transformers
YituTech/conv-bert-small
2021-02-24T11:26:46.000Z
[ "pytorch", "tf", "convbert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tf_model.h5", "vocab.txt" ]
YituTech
689
transformers
Yongqi/gru_bidaf
2021-05-10T06:50:07.000Z
[]
[ ".gitattributes" ]
Yongqi
0
Yotam/new
2021-05-14T04:24:53.000Z
[]
[ ".gitattributes", "README.md" ]
Yotam
0
Yunus/mymodel
2020-11-17T04:22:01.000Z
[]
[ ".gitattributes", "README.md" ]
Yunus
0
hello
Yuriy/wer
2021-04-11T00:22:26.000Z
[]
[ ".gitattributes" ]
Yuriy
0
Yuuryoku/Junko_Enoshima
2021-06-05T02:46:15.000Z
[]
[ ".gitattributes" ]
Yuuryoku
0
Yves/wav2vec2-large-xlsr-53-swiss-german
2021-06-11T15:45:30.000Z
[ "pytorch", "wav2vec2", "sg", "dataset:Yves/fhnw_swiss_parliament", "transformers", "audio", "speech", "automatic-speech-recognition", "xlsr-fine-tuning-week", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Yves
135
transformers
--- language: sg datasets: - Yves/fhnw_swiss_parliament metrics: - wer tags: - audio - speech - wav2vec2 - sg - automatic-speech-recognition - speech - xlsr-fine-tuning-week - PyTorch license: apache-2.0 model-index: - name: Yves XLSR Wav2Vec2 Large 53 Swiss German results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Yves/fhnw_swiss_parliament type: Yves/fhnw_swiss_parliament metrics: - name: Test WER type: wer value: NA% --- # wav2vec2-large-xlsr-53-swiss-german Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Swiss German trying to achieve satisfactory Swiss-German to German transcriptions ## Dataset Detailed information about the dataset that the model has been trained and validated with is available on [Yves/fhnw_swiss_parliament](https://huggingface.co/datasets/Yves/fhnw_swiss_parliament) ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("Yves/fhnw_swiss_parliament", data_dir="swiss_parliament", split="validation") processor = Wav2Vec2Processor.from_pretrained("Yves/wav2vec2-large-xlsr-53-swiss-german") model = Wav2Vec2ForCTC.from_pretrained("Yves/wav2vec2-large-xlsr-53-swiss-german").cuda() resampler = torchaudio.transforms.Resample(48_000, 16_000) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.cuda(), attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"]) ``` ## Evaluation ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys import csv model_name = "Yves/wav2vec2-large-xlsr-53-swiss-german" device = "cuda" chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\_\²\…\˟\&\+\[\]\(\−\–\)\›\»\‹\@\«\*\ʼ\/\°\'\'\’\'̈]' completed_iterations = 0 eval_batch_size = 16 model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("Yves/fhnw_swiss_parliament", data_dir="container_0/swiss_parliament_dryrun", split="validation") wer = load_metric("wer") cer = load_metric("cer") bleu = load_metric("sacrebleu") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) out_file = open('output.tsv', 'w', encoding='utf-8') tsv_writer = csv.writer(out_file, delimiter='\t') tsv_writer.writerow(["client_id", "reference", "prediction", "wer", "cer", "bleu"]) def map_to_pred(batch,idx): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] if not (len(idx) <= 2 and idx[0] == 0): for x in range(0, len(idx)): temp_reference = [] temp_reference.append([batch["target"][x]]) tsv_writer.writerow([batch["client_id"][x], batch["target"][x], batch["predicted"][x], wer.compute(predictions=[batch["predicted"][x]], references=[batch["sentence"][x]]), cer.compute(predictions=[batch["predicted"][x]], references=[batch["sentence"][x]]), bleu.compute(predictions=[batch["predicted"][x]], references=temp_reference)["score"]]) return batch result = ds.map(map_to_pred, batched=True, batch_size=eval_batch_size, with_indices=True, remove_columns=list(ds.features.keys())) out_file.close() target_bleu = [] for x in result["target"]: target_bleu.append([x]) print(wer.compute(predictions=result["predicted"], references=result["target"])) print(cer.compute(predictions=result["predicted"], references=result["target"])) print(bleu.compute(predictions=result["predicted"], references=target_bleu)) ``` ## Scripts The script used for training can be found on Google Colab [TBD](https://huggingface.co/Yves/wav2vec2-large-xlsr-53-swiss-german)
ZYW/Xquad
2021-05-26T02:42:47.000Z
[]
[ ".gitattributes" ]
ZYW
0
ZYW/en-de-es-model
2021-05-29T17:28:09.000Z
[ "pytorch", "distilbert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
10
transformers
--- model-index: - name: en-de-es-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/en-de-model
2021-05-29T17:52:17.000Z
[ "pytorch", "distilbert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
11
transformers
--- model-index: - name: en-de-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/en-de-vi-zh-es-model
2021-05-29T17:33:12.000Z
[ "pytorch", "distilbert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
19
transformers
--- model-index: - name: en-de-vi-zh-es-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-vi-zh-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/squad-en-de-es-model
2021-05-29T16:53:56.000Z
[ "pytorch", "distilbert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
12
transformers
--- model-index: - name: squad-en-de-es-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/squad-en-de-es-vi-zh-model
2021-05-29T21:46:39.000Z
[ "pytorch", "distilbert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
23
transformers
--- model-index: - name: squad-en-de-es-vi-zh-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-en-de-es-vi-zh-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/squad-mbart-model
2021-05-30T16:12:15.000Z
[ "pytorch", "mbart", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
37
transformers
--- model-index: - name: squad-mbart-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbart-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/squad-mbert-en-de-es-model
2021-05-30T22:33:10.000Z
[ "pytorch", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
12
transformers
--- model-index: - name: squad-mbert-en-de-es-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/squad-mbert-en-de-es-vi-zh-model
2021-05-31T05:43:16.000Z
[ "pytorch", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
14
transformers
--- model-index: - name: squad-mbert-en-de-es-vi-zh-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-en-de-es-vi-zh-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/squad-mbert-model
2021-05-30T15:15:53.000Z
[ "pytorch", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
30
transformers
--- model-index: - name: squad-mbert-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/squad-mbert-model_2
2021-05-30T18:18:37.000Z
[ "pytorch", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
6
transformers
--- model-index: - name: squad-mbert-model_2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-model_2 This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/test-squad-trained
2021-05-26T02:38:39.000Z
[ "pytorch", "distilbert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
ZYW
32
transformers
--- model-index: - name: test-squad-trained --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-squad-trained This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.2026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.988 | 1.0 | 5486 | 1.1790 | | 0.7793 | 2.0 | 10972 | 1.2026 | | 0.8068 | 3.0 | 16458 | 1.2026 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.6.2 - Tokenizers 0.10.3
Zaid/wav2vec2-large-xlsr-53-arabic-egyptian
2021-03-22T07:28:09.000Z
[ "pytorch", "wav2vec2", "???", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "dialects_speech_corpus.py", "optimizer.pt", "preprocessor_config.json", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Zaid
312
transformers
--- language: ??? datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Arabic Egyptian by Zaid results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ??? type: common_voice args: ??? metrics: - name: Test WER type: wer value: ??? --- # Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "???", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") model = Wav2Vec2ForCTC.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "???", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") model = Wav2Vec2ForCTC.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: ??? % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found ???
Zaid/wav2vec2-large-xlsr-dialect-classification
2021-04-06T16:10:38.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".gitattributes", "config.json", "preprocessor_config.json", "pytorch_model.bin", "trainer_state.json", "training_args.bin" ]
Zaid
194
transformers
ZiweiG/ziwei-bert-imdb
2021-05-18T22:52:12.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ZiweiG
17
transformers
ZiweiG/ziwei-bertimdb-prob
2021-05-18T22:53:05.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ZiweiG
16
transformers
Zoe/model_covid
2021-01-28T23:30:52.000Z
[]
[ ".gitattributes" ]
Zoe
0
Zwrok/Start
2021-03-12T17:50:11.000Z
[]
[ ".gitattributes" ]
Zwrok
0
a-ware/bart-squadv2
2020-12-11T21:30:58.000Z
[ "pytorch", "bart", "question-answering", "dataset:squad_v2", "arxiv:1910.13461", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "merges.txt", "model_args.json", "nbest_predictions_test.json", "null_odds_test.json", "predictions_test.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
a-ware
122
transformers
--- datasets: - squad_v2 --- # BART-LARGE finetuned on SQuADv2 This is bart-large model finetuned on SQuADv2 dataset for question answering task ## Model details BART was propsed in the [paper](https://arxiv.org/abs/1910.13461) **BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension**. BART is a seq2seq model intended for both NLG and NLU tasks. To use BART for question answering tasks, we feed the complete document into the encoder and decoder, and use the top hidden state of the decoder as a representation for each word. This representation is used to classify the token. As given in the paper bart-large achives comparable to ROBERTa on SQuAD. Another notable thing about BART is that it can handle sequences with upto 1024 tokens. | Param | #Value | |---------------------|--------| | encoder layers | 12 | | decoder layers | 12 | | hidden size | 4096 | | num attetion heads | 16 | | on disk size | 1.63GB | ## Model training This model was trained with following parameters using simpletransformers wrapper: ``` train_args = { 'learning_rate': 1e-5, 'max_seq_length': 512, 'doc_stride': 512, 'overwrite_output_dir': True, 'reprocess_input_data': False, 'train_batch_size': 8, 'num_train_epochs': 2, 'gradient_accumulation_steps': 2, 'no_cache': True, 'use_cached_eval_features': False, 'save_model_every_epoch': False, 'output_dir': "bart-squadv2", 'eval_batch_size': 32, 'fp16_opt_level': 'O2', } ``` [You can even train your own model using this colab notebook](https://colab.research.google.com/drive/1I5cK1M_0dLaf5xoewh6swcm5nAInfwHy?usp=sharing) ## Results ```{"correct": 6832, "similar": 4409, "incorrect": 632, "eval_loss": -14.950117511952177}``` ## Model in Action 🚀 ```python3 from transformers import BartTokenizer, BartForQuestionAnswering import torch tokenizer = BartTokenizer.from_pretrained('a-ware/bart-squadv2') model = BartForQuestionAnswering.from_pretrained('a-ware/bart-squadv2') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" encoding = tokenizer(question, text, return_tensors='pt') input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] start_scores, end_scores = model(input_ids, attention_mask=attention_mask, output_attentions=False)[:2] all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]) answer = tokenizer.convert_tokens_to_ids(answer.split()) answer = tokenizer.decode(answer) #answer => 'a nice puppet' ``` > Created with ❤️ by A-ware UG [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/aware-ai)
a-ware/distilbart-xsum-12-3-squadv2
2020-06-26T21:05:39.000Z
[ "pytorch", "bart", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "merges.txt", "model_args.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
a-ware
18
transformers
a-ware/distilbart-xsum-12-6-squadv2
2020-06-28T11:04:49.000Z
[ "pytorch", "bart", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "merges.txt", "model_args.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
a-ware
15
transformers
a-ware/longformer-QA
2020-08-07T09:40:36.000Z
[ "pytorch", "tf", "longformer", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "merges.txt", "model_args.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
a-ware
50
transformers
a-ware/longformer-squadv2
2020-08-07T11:30:59.000Z
[ "pytorch", "tf", "longformer", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "merges.txt", "model_args.json", "nbest_predictions_test.json", "null_odds_test.json", "optimizer.pt", "predictions_test.json", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
a-ware
34
transformers
a-ware/mobilebert-squadv2
2020-06-30T21:58:56.000Z
[ "pytorch", "tfsavedmodel", "mobilebert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "model_args.json", "nbest_predictions_test.json", "null_odds_test.json", "predictions_test.json", "pytorch_model.bin", "saved_model.tar.gz", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
a-ware
27
transformers
a-ware/roberta-large-squad-classification
2021-05-20T12:35:01.000Z
[ "pytorch", "jax", "roberta", "text-classification", "dataset:squad_v2", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "model_args.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
a-ware
141
transformers
--- datasets: - squad_v2 --- # Roberta-LARGE finetuned on SQuADv2 This is roberta-large model finetuned on SQuADv2 dataset for question answering answerability classification ## Model details This model is simply an Sequenceclassification model with two inputs (context and question) in a list. The result is either [1] for answerable or [0] if it is not answerable. It was trained over 4 epochs on squadv2 dataset and can be used to filter out which context is good to give into the QA model to avoid bad answers. ## Model training This model was trained with following parameters using simpletransformers wrapper: ``` train_args = { 'learning_rate': 1e-5, 'max_seq_length': 512, 'overwrite_output_dir': True, 'reprocess_input_data': False, 'train_batch_size': 4, 'num_train_epochs': 4, 'gradient_accumulation_steps': 2, 'no_cache': True, 'use_cached_eval_features': False, 'save_model_every_epoch': False, 'output_dir': "bart-squadv2", 'eval_batch_size': 8, 'fp16_opt_level': 'O2', } ``` ## Results ```{"accuracy": 90.48%}``` ## Model in Action 🚀 ```python3 from simpletransformers.classification import ClassificationModel model = ClassificationModel('roberta', 'a-ware/roberta-large-squadv2', num_labels=2, args=train_args) predictions, raw_outputs = model.predict([["my dog is an year old. he loves to go into the rain", "how old is my dog ?"]]) print(predictions) ==> [1] ``` > Created with ❤️ by A-ware UG [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/aware-ai)
a-ware/roberta-large-squadv2
2021-05-20T12:37:36.000Z
[ "pytorch", "jax", "tfsavedmodel", "roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "model_args.json", "nbest_predictions_test.json", "null_odds_test.json", "predictions_test.json", "pytorch_model.bin", "saved_model.tar.gz", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
a-ware
954
transformers
a-ware/xlmroberta-QA
2020-07-07T10:05:15.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "model_args.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin" ]
a-ware
24
transformers
a-ware/xlmroberta-squadv2
2020-12-11T21:31:05.000Z
[ "pytorch", "xlm-roberta", "question-answering", "dataset:squad_v2", "arxiv:1911.02116", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "model_args.json", "nbest_predictions_test.json", "null_odds_test.json", "optimizer.pt", "predictions_test.json", "pytorch_model.bin", "scheduler.pt", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin" ]
a-ware
181
transformers
--- datasets: - squad_v2 --- # XLM-ROBERTA-LARGE finetuned on SQuADv2 This is xlm-roberta-large model finetuned on SQuADv2 dataset for question answering task ## Model details XLM-Roberta was propsed in the [paper](https://arxiv.org/pdf/1911.02116.pdf) **XLM-R: State-of-the-art cross-lingual understanding through self-supervision ## Model training This model was trained with following parameters using simpletransformers wrapper: ``` train_args = { 'learning_rate': 1e-5, 'max_seq_length': 512, 'doc_stride': 512, 'overwrite_output_dir': True, 'reprocess_input_data': False, 'train_batch_size': 8, 'num_train_epochs': 2, 'gradient_accumulation_steps': 2, 'no_cache': True, 'use_cached_eval_features': False, 'save_model_every_epoch': False, 'output_dir': "bart-squadv2", 'eval_batch_size': 32, 'fp16_opt_level': 'O2', } ``` ## Results ```{"correct": 6961, "similar": 4359, "incorrect": 553, "eval_loss": -12.177856394381962}``` ## Model in Action 🚀 ```python3 from transformers import XLMRobertaTokenizer, XLMRobertaForQuestionAnswering import torch tokenizer = XLMRobertaTokenizer.from_pretrained('a-ware/xlmroberta-squadv2') model = XLMRobertaForQuestionAnswering.from_pretrained('a-ware/xlmroberta-squadv2') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" encoding = tokenizer(question, text, return_tensors='pt') input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] start_scores, end_scores = model(input_ids, attention_mask=attention_mask, output_attentions=False)[:2] all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]) answer = tokenizer.convert_tokens_to_ids(answer.split()) answer = tokenizer.decode(answer) #answer => 'a nice puppet' ``` > Created with ❤️ by A-ware UG [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/aware-ai)
a1noack/bart-large-gigaword
2021-04-20T01:23:25.000Z
[ "pytorch", "bart", "transformers", "summarization", "license:mit" ]
summarization
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "vocab.json" ]
a1noack
279
transformers
--- tags: - summarization license: mit thumbnail: https://en.wikipedia.org/wiki/Bart_Simpson#/media/File:Bart_Simpson_200px.png --- # BART for Gigaword - This model was created by fine-tuning the `facebook/bart-large-cnn` weights (also on HuggingFace) for the Gigaword dataset. The model was fine-tuned on the Gigaword training set for 3 epochs, and the model with the highest ROUGE-1 score on the training set batches was kept. - The BART Tokenizer for CNN-Dailymail was used in the fine-tuning process and that is the tokenizer that will be loaded automatically when doing: ``` from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("a1noack/bart-large-gigaword") ``` # Summary generation - This model achieves ROUGE-1 / ROUGE-2 / ROUGE-L of 37.28 / 18.58 / 34.53 on the Gigaword test set; this is pretty good when compared to PEGASUS, `google/pegasus-gigaword`, which achieves 39.12 / 19.86 / 36.24. - To achieve these results, generate text using the code below. `text_list` is a list of input text string. ``` input_ids_list = tokenizer(text_list, truncation=True, max_length=128, return_tensors='pt', padding=True)['input_ids'] output_ids_list = model.generate(input_ids_list, min_length=0) outputs_list = tokenizer.batch_decode(output_ids_list, skip_special_tokens=True, clean_up_tokenization_spaces=False) ```
aRchMaGe/whatever
2021-02-22T14:37:27.000Z
[]
[ ".gitattributes" ]
aRchMaGe
0
aaaa/aaaa
2021-01-22T19:24:44.000Z
[]
[ ".gitattributes" ]
aaaa
0
aadelucia/GPT2_medium_narrative_finetuned_large
2021-05-21T11:44:03.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
aadelucia
11
transformers
aadelucia/GPT2_medium_narrative_finetuned_medium
2021-05-21T11:48:25.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
aadelucia
10
transformers
aakash123/ejej
2021-02-24T16:29:37.000Z
[]
[ ".gitattributes", "README.md" ]
aakash123
0
aakashD/t5_paraphrase
2020-07-26T15:52:56.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
aakashD
19
transformers
aapot/wav2vec2-large-xlsr-53-finnish
2021-04-27T06:08:06.000Z
[ "pytorch", "wav2vec2", "fi", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
aapot
453
transformers
--- language: fi datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Finnish by Aapo Tanskanen results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fi type: common_voice args: fi metrics: - name: Test WER type: wer value: 32.378771 --- # Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice), [CSS10 Finnish](https://www.kaggle.com/bryanpark/finnish-single-speaker-speech-dataset) and [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import librosa import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import librosa import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\...\…\–\é]' resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 32.378771 % ## Training The Common Voice `train`, `validation` and `other` datasets were used for training as well as `CSS10 Finnish` and `Finnish parliament session 2` datasets. The script used for training can be found from [Google Colab](https://colab.research.google.com/drive/1vnEGC9BnNRmVyIHj-0UsVulh_cUYSGWA?usp=sharing)
abbas/gpt2-horror-stories
2021-05-21T11:50:54.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.txt", "training_args.bin", "vocab.json" ]
abbas
104
transformers
abdinoor/bert-base-uncased
2020-11-30T18:42:17.000Z
[]
[ ".gitattributes" ]
abdinoor
0
abdulbaseer/will_lliw_gpt2
2021-05-21T03:10:49.000Z
[]
[ ".gitattributes" ]
abdulbaseer
0
abelsaug/albert-xxl_test
2021-02-08T22:04:35.000Z
[]
[ ".gitattributes" ]
abelsaug
0
abhi1nandy2/Bible-roberta-base
2021-05-20T12:39:19.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "en", "transformers", "English", "Bible", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
abhi1nandy2
9
transformers
--- language: "en" tags: - English - Bible dataset: - English Bible Translation Dataset - Link: https://www.kaggle.com/oswinrh/bible inference: false --- Dataset - English Bible Translation Dataset (https://www.kaggle.com/oswinrh/bible) *NOTE:* It is `roberta-base` fine-tuned (for MLM objective) for 1 epoch (using MLM objective) on the 7 `.csv` files mentioned above, which consist of around 5.5M words.
abhi1nandy2/Craft-bionlp-roberta-base
2021-05-20T12:40:32.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
abhi1nandy2
11
transformers
abhi1nandy2/EManuals_roberta
2021-05-20T12:42:54.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
abhi1nandy2
15
transformers
abhi1nandy2/Europarl-roberta-base
2021-05-20T12:44:00.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
abhi1nandy2
12
transformers
abhiii/qna
2021-05-05T13:49:57.000Z
[]
[ ".gitattributes" ]
abhiii
0
abhijithneilabraham/longformer_covid_qa
2021-05-13T19:09:22.000Z
[ "pytorch", "longformer", "question-answering", "dataset:covid_qa_deepset", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
abhijithneilabraham
188
transformers
# Dataset --- --- datasets: - covid_qa_deepset --- --- Covid 19 question answering data obtained from [covid_qa_deepset](https://huggingface.co/datasets/covid_qa_deepset). # Original Repository Repository for the fine tuning, inference and evaluation scripts can be found [here](https://github.com/abhijithneilabraham/Covid-QA). # Model in action ``` import torch from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("abhijithneilabraham/longformer_covid_qa") model = AutoModelForQuestionAnswering.from_pretrained("abhijithneilabraham/longformer_covid_qa") question = "In this way, what do the mRNA-destabilising RBPs constitute ?" text = """ In this way, mRNA-destabilising RBPs constitute a 'brake' on the immune system, which may ultimately be toggled therapeutically. I anticipate continued efforts in this area will lead to new methods of regaining control over inflammation in autoimmunity, selectively enhancing immunity in immunotherapy, and modulating RNA synthesis and virus replication during infection. Another mRNA under post-transcriptional regulation by Regnase-1 and Roquin is Furin, which encodes a conserved proprotein convertase crucial in human health and disease. Furin, along with other PCSK family members, is widely implicated in immune regulation, cancer and the entry, maturation or release of a broad array of evolutionarily diverse viruses including human papillomavirus (HPV), influenza (IAV), Ebola (EboV), dengue (DenV) and human immunodeficiency virus (HIV). Here, Braun and Sauter review the roles of furin in these processes, as well as the history and future of furin-targeting therapeutics. 7 They also discuss their recent work revealing how two IFN-cinducible factors exhibit broad-spectrum inhibition of IAV, measles (MV), zika (ZikV) and HIV by suppressing furin activity. 8 Over the coming decade, I expect to see an ever-finer spatiotemporal resolution of host-oriented therapies to achieve safe, effective and broad-spectrum yet costeffective therapies for clinical use. The increasing abundance of affordable, sensitive, high-throughput genome sequencing technologies has led to a recent boom in metagenomics and the cataloguing of the microbiome of our world. The MinION nanopore sequencer is one of the latest innovations in this space, enabling direct sequencing in a miniature form factor with only minimal sample preparation and a consumer-grade laptop computer. Nakagawa and colleagues here report on their latest experiments using this system, further improving its performance for use in resource-poor contexts for meningitis diagnoses. 9 While direct sequencing of viral genomic RNA is challenging, this system was recently used to directly sequence an RNA virus genome (IAV) for the first time. 10 I anticipate further improvements in the performance of such devices over the coming decade will transform virus surveillance efforts, the importance of which was underscored by the recent EboV and novel coronavirus (nCoV / COVID-19) outbreaks, enabling rapid deployment of antiviral treatments that take resistance-conferring mutations into account. Decades of basic immunology research have provided a near-complete picture of the main armaments in the human antiviral arsenal. Nevertheless, this focus on mammalian defences and pathologies has sidelined examination of the types and roles of viruses and antiviral defences that exist throughout our biosphere. One case in point is the CRISPR/Cas antiviral immune system of prokaryotes, which is now repurposed as a revolutionary gene-editing biotechnology in plants and animals. 11 Another is the ancient lineage of nucleocytosolic large DNA viruses (NCLDVs), which are emerging human pathogens that possess enormous genomes of up to several megabases in size encoding hundreds of proteins with unique and unknown functions. 12 Moreover, hundreds of human-and avian-infective viruses such as IAV strain H5N1 are known, but recent efforts indicate the true number may be in the millions and many harbour zoonotic potential. 13 It is increasingly clear that host-virus interactions have generated truly vast yet poorly understood and untapped biodiversity. Closing this Special Feature, Watanabe and Kawaoka elaborate on neo-virology, an emerging field engaged in cataloguing and characterising this biodiversity through a global consortium. 14 I predict these efforts will unlock a vast wealth of currently unexplored biodiversity, leading to biotechnologies and treatments that leverage the host-virus interactions developed throughout evolution. When biomedical innovations fall into the 'Valley of Death', patients who are therefore not reached all too often fall with them. Being entrusted with the resources and expectation to conceive, deliver and communicate dividends to society is both cherished and eagerly pursued at every stage of our careers. Nevertheless, the road to research translation is winding and is built on a foundation of basic research. Supporting industry-academia collaboration and nurturing talent and skills in the Indo-Pacific region are two of the four pillars of the National Innovation and Science Agenda. 2 These frame Australia's Medical Research and Innovation Priorities, which include antimicrobial resistance, global health and health security, drug repurposing and translational research infrastructure, 15 capturing many of the key elements of this CTI Special Feature. Establishing durable international relationships that integrate diverse expertise is essential to delivering these outcomes. To this end, NHMRC has recently taken steps under the International Engagement Strategy 16 to increase cooperation with its counterparts overseas. These include the Japan Agency for Medical Research and Development (AMED), tasked with translating the biomedical research output of that country. Given the reciprocal efforts at accelerating bilateral engagement currently underway, 17 the prospects for new areas of international cooperation and mobility have never been more exciting nor urgent. With the above in mind, all contributions to this CTI Special Feature I have selected from research presented by fellow invitees to the 2018 Awaji International Forum on Infection and Immunity (AIFII) and 2017 Consortium of Biological Sciences (ConBio) conferences in Japan. Both Australia and Japan have strong traditions in immunology and related disciplines, and I predict that the quantity, quality and importance of our bilateral cooperation will accelerate rapidly over the short to medium term. By expanding and cooperatively leveraging our respective research strengths, our efforts may yet solve the many pressing disease, cost and other sustainability issues of our time. """ encoding = tokenizer(question, text, return_tensors="pt") input_ids = encoding["input_ids"] # default is local attention everywhere # the forward method will automatically set global attention on question tokens attention_mask = encoding["attention_mask"] start_scores, end_scores = model(input_ids, attention_mask=attention_mask) all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) answer_tokens = all_tokens[torch.argmax(start_scores) :torch.argmax(end_scores)+1] answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # output => a 'brake' on the immune system ```
abhilash1910/albert-german-ner
2021-03-07T13:52:26.000Z
[ "tf", "albert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "Readme.md", "config.json", "special_tokens_map.json", "spiece.model", "test_predictions.txt", "test_results.txt", "tf_model.h5", "tokenizer_config.json" ]
abhilash1910
23
transformers
## German NER Albert Model This is a trained Albert model for Token Classification in German ,[Germeval](https://sites.google.com/site/germeval2014ner/) and can be used for Inference. ## Model Specifications - MAX_LENGTH=128 - MODEL='albert-base-v1' - BATCH_SIZE=32 - NUM_EPOCHS=3 - SAVE_STEPS=750 - SEED=1 - SAVE_STEPS = 100 - LOGGING_STEPS = 100 - SEED = 42 ### Usage Specifications This model is trained on Tensorflow version and is compatible with the 'ner' pipeline of huggingface. ```python from transformers import AutoTokenizer,TFAutoModelForTokenClassification from transformers import pipeline model=TFAutoModelForTokenClassification.from_pretrained('abhilash1910/albert-german-ner') tokenizer=AutoTokenizer.from_pretrained('abhilash1910/albert-german-ner') ner_model = pipeline('ner', model=model, tokenizer=tokenizer) seq='Berlin ist die Hauptstadt von Deutschland' ner_model(seq) ``` The Tensorflow version of Albert is used for training the model and the output for the above mentioned segment is as follows: ``` [{'entity': 'B-PERderiv', 'index': 1, 'score': 0.09580112248659134, 'word': '▁berlin'}, {'entity': 'B-ORGpart', 'index': 2, 'score': 0.08364498615264893, 'word': '▁is'}, {'entity': 'B-LOCderiv', 'index': 3, 'score': 0.07593920826911926, 'word': 't'}, {'entity': 'B-PERderiv', 'index': 4, 'score': 0.09574996680021286, 'word': '▁die'}, {'entity': 'B-LOCderiv', 'index': 5, 'score': 0.07097965478897095, 'word': '▁'}, {'entity': 'B-PERderiv', 'index': 6, 'score': 0.07122448086738586, 'word': 'haupt'}, {'entity': 'B-PERderiv', 'index': 7, 'score': 0.12397754937410355, 'word': 'stadt'}, {'entity': 'I-OTHderiv', 'index': 8, 'score': 0.0818650871515274, 'word': '▁von'}, {'entity': 'I-LOCderiv', 'index': 9, 'score': 0.08271490037441254, 'word': '▁'}, {'entity': 'B-LOCderiv', 'index': 10, 'score': 0.08616268634796143, 'word': 'deutschland'}] ``` ## Resources For all resources , please look into [huggingface](https://huggingface.com).
abhilash1910/distilbert-squadv1
2021-03-09T11:36:17.000Z
[ "pytorch", "distilbert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
abhilash1910
8
transformers
# DistilBERT--SQuAD-v1 Training is done on the [SQuAD](https://huggingface.co/datasets/squad) dataset. The model can be accessed via [HuggingFace](https://huggingface.co/abhilash1910/distilbert-squadv1): ## Model Specifications We have used the following parameters: - Training Batch Size : 512 - Learning Rate : 3e-5 - Training Epochs : 0.75 - Sequence Length : 384 - Stride : 128 ## Usage Specifications ```python from transformers import AutoModelForQuestionAnswering,AutoTokenizer,pipeline model=AutoModelForQuestionAnswering.from_pretrained('abhilash1910/distilbert-squadv1') tokenizer=AutoTokenizer.from_pretrained('abhilash1910/distilbert-squadv1') nlp_QA=pipeline('question-answering',model=model,tokenizer=tokenizer) QA_inp={ 'question': 'What is the fund price of Huggingface in NYSE?', 'context': 'Huggingface Co. has a total fund price of $19.6 million dollars' } result=nlp_QA(QA_inp) result ``` The result is: ```bash {'score': 0.38547369837760925, 'start': 42, 'end': 55, 'answer': '$19.6 million'} ```
abhilash1910/financial_roberta
2021-05-20T12:45:02.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "arxiv:1907.11692", "transformers", "finance", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
abhilash1910
564
transformers
--- tags: - finance --- # Roberta Masked Language Model Trained On Financial Phrasebank Corpus This is a Masked Language Model trained with [Roberta](https://huggingface.co/transformers/model_doc/roberta.html) on a Financial Phrasebank Corpus. The model is built using Huggingface transformers. The model can be found at :[Financial_Roberta](https://huggingface.co/abhilash1910/financial_roberta) ## Specifications The corpus for training is taken from the Financial Phrasebank (Malo et al)[https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts]. ## Model Specification The model chosen for training is [Roberta](https://arxiv.org/abs/1907.11692) with the following specifications: 1. vocab_size=56000 2. max_position_embeddings=514 3. num_attention_heads=12 4. num_hidden_layers=6 5. type_vocab_size=1 This is trained by using RobertaConfig from transformers package. The model is trained for 10 epochs with a gpu batch size of 64 units. ## Usage Specifications For using this model, we have to first import AutoTokenizer and AutoModelWithLMHead Modules from transformers After that we have to specify, the pre-trained model,which in this case is 'abhilash1910/financial_roberta' for the tokenizers and the model. ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("abhilash1910/financial_roberta") model = AutoModelWithLMHead.from_pretrained("abhilash1910/financial_roberta") ``` After this the model will be downloaded, it will take some time to download all the model files. For testing the model, we have to import pipeline module from transformers and create a masked output model for inference as follows: ```python from transformers import pipeline model_mask = pipeline('fill-mask', model='abhilash1910/inancial_roberta') model_mask("The company had a <mask> of 20% in 2020.") ``` Some of the examples are also provided with generic financial statements: Example 1: ```python model_mask("The company had a <mask> of 20% in 2020.") ``` Output: ```bash [{'sequence': '<s>The company had a profit of 20% in 2020.</s>', 'score': 0.023112965747714043, 'token': 421, 'token_str': 'Ġprofit'}, {'sequence': '<s>The company had a loss of 20% in 2020.</s>', 'score': 0.021379893645644188, 'token': 616, 'token_str': 'Ġloss'}, {'sequence': '<s>The company had a year of 20% in 2020.</s>', 'score': 0.0185744296759367, 'token': 443, 'token_str': 'Ġyear'}, {'sequence': '<s>The company had a sales of 20% in 2020.</s>', 'score': 0.018143286928534508, 'token': 428, 'token_str': 'Ġsales'}, {'sequence': '<s>The company had a value of 20% in 2020.</s>', 'score': 0.015319528989493847, 'token': 776, 'token_str': 'Ġvalue'}] ``` Example 2: ```python model_mask("The <mask> is listed under NYSE") ``` Output: ```bash [{'sequence': '<s>The company is listed under NYSE</s>', 'score': 0.1566661298274994, 'token': 359, 'token_str': 'Ġcompany'}, {'sequence': '<s>The total is listed under NYSE</s>', 'score': 0.05542507395148277, 'token': 522, 'token_str': 'Ġtotal'}, {'sequence': '<s>The value is listed under NYSE</s>', 'score': 0.04729423299431801, 'token': 776, 'token_str': 'Ġvalue'}, {'sequence': '<s>The order is listed under NYSE</s>', 'score': 0.02533523552119732, 'token': 798, 'token_str': 'Ġorder'}, {'sequence': '<s>The contract is listed under NYSE</s>', 'score': 0.02087237872183323, 'token': 635, 'token_str': 'Ġcontract'}] ``` ## Resources For all resources , please look into the [HuggingFace](https://huggingface.co/) Site and the [Repositories](https://github.com/huggingface).
abhilash1910/french-roberta
2021-05-20T12:45:47.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "arxiv:1907.11692", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "log_history.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
abhilash1910
49
transformers
# Roberta Trained Model For Masked Language Model On French Corpus :robot: This is a Masked Language Model trained with [Roberta](https://huggingface.co/transformers/model_doc/roberta.html) on a small French News Corpus(Leipzig corpora). The model is built using Huggingface transformers. The model can be found at :[French-Roberta](https://huggingface.co/abhilash1910/french-roberta) ## Specifications The corpus for training is taken from Leipzig Corpora (French News) , and is trained on a small set of the corpus (300K). ## Model Specification The model chosen for training is [Roberta](https://arxiv.org/abs/1907.11692) with the following specifications: 1. vocab_size=32000 2. max_position_embeddings=514 3. num_attention_heads=12 4. num_hidden_layers=6 5. type_vocab_size=1 This is trained by using RobertaConfig from transformers package.The total training parameters :68124416 The model is trained for 100 epochs with a gpu batch size of 64 units. More details for building custom models can be found at the [HuggingFace Blog](https://huggingface.co/blog/how-to-train) ## Usage Specifications For using this model, we have to first import AutoTokenizer and AutoModelWithLMHead Modules from transformers After that we have to specify, the pre-trained model,which in this case is 'abhilash1910/french-roberta' for the tokenizers and the model. ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("abhilash1910/french-roberta") model = AutoModelWithLMHead.from_pretrained("abhilash1910/french-roberta") ``` After this the model will be downloaded, it will take some time to download all the model files. For testing the model, we have to import pipeline module from transformers and create a masked output model for inference as follows: ```python from transformers import pipeline model_mask = pipeline('fill-mask', model='abhilash1910/french-roberta') model_mask("Le tweet <mask>.") ``` Some of the examples are also provided with generic French sentences: Example 1: ```python model_mask("À ce jour, <mask> projet a entraîné") ``` Output: ```bash [{'sequence': '<s>À ce jour, belles projet a entraîné</s>', 'score': 0.18685665726661682, 'token': 6504, 'token_str': 'Ġbelles'}, {'sequence': '<s>À ce jour,- projet a entraîné</s>', 'score': 0.0005200508167035878, 'token': 17, 'token_str': '-'}, {'sequence': '<s>À ce jour, de projet a entraîné</s>', 'score': 0.00045729897101409733, 'token': 268, 'token_str': 'Ġde'}, {'sequence': '<s>À ce jour, du projet a entraîné</s>', 'score': 0.0004307595663703978, 'token': 326, 'token_str': 'Ġdu'}, {'sequence': '<s>À ce jour," projet a entraîné</s>', 'score': 0.0004219160182401538, 'token': 6, 'token_str': '"'}] ``` Example 2: ```python model_mask("C'est un <mask>") ``` Output: ```bash [{'sequence': "<s>C'est un belles</s>", 'score': 0.16440927982330322, 'token': 6504, 'token_str': 'Ġbelles'}, {'sequence': "<s>C'est un de</s>", 'score': 0.0005495127406902611, 'token': 268, 'token_str': 'Ġde'}, {'sequence': "<s>C'est un du</s>", 'score': 0.00044988933950662613, 'token': 326, 'token_str': 'Ġdu'}, {'sequence': "<s>C'est un-</s>", 'score': 0.00044542422983795404, 'token': 17, 'token_str': '-'}, {'sequence': "<s>C'est un\t</s>", 'score': 0.00037563967634923756, 'token': 202, 'token_str': 'ĉ'}] ``` ## Resources For all resources , please look into the [HuggingFace](https://huggingface.co/) Site and the [Repositories](https://github.com/huggingface).
abhiramtirumala/DialoGPT-sarcastic-medium
2021-05-27T21:33:38.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
abhiramtirumala
13
transformers
abhiramtirumala/DialoGPT-sarcastic
2021-05-22T00:52:20.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "pipeline_tag:conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
abhiramtirumala
566
transformers
--- pipeline_tag: conversational --- This model is a fine-tuned version of Microsoft/DialoGPT-small trained to created sarcastic responses.
abhishek/autonlp-hindi-asr
2021-04-09T12:31:26.000Z
[ "pytorch", "wav2vec2", "transformers", "autonlp", "automatic-speech-recognition", "audio" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
abhishek
219
transformers
--- tags: - autonlp - automatic-speech-recognition - audio language: {language} --- # Model Trained Using AutoNLP - Problem type: Speech Recognition
abhishek/autonlp-imdb_eval-71421
2021-05-18T22:54:10.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "dataset:abhishek/autonlp-data-imdb_eval", "transformers", "autonlp" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sample_input.pkl", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
abhishek
17
transformers
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-imdb_eval --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 71421 ## Validation Metrics - Loss: 0.4114699363708496 - Accuracy: 0.8248248248248248 - Precision: 0.8305439330543933 - Recall: 0.8085539714867617 - AUC: 0.9088033420466026 - F1: 0.8194014447884417 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-imdb_eval-71421 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-imdb_eval-71421", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-imdb_eval-71421", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
abhishek/autonlp-imdb_sentiment_classification-31154
2021-05-20T12:46:38.000Z
[ "pytorch", "jax", "roberta", "text-classification", "en", "transformers", "autonlp" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sample_input.pkl", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
abhishek
106
transformers
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 31154 ## Validation Metrics - Loss: 0.19292379915714264 - Accuracy: 0.9395 - Precision: 0.9569557080474111 - Recall: 0.9204 - AUC: 0.9851040399999998 - F1: 0.9383219492302988 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-imdb_sentiment_classification-31154 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-imdb_sentiment_classification-31154", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-imdb_sentiment_classification-31154", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
abhishek/autonlp-japanese-sentiment-59362
2021-05-18T22:55:03.000Z
[ "pytorch", "jax", "bert", "text-classification", "ja", "dataset:abhishek/autonlp-data-japanese-sentiment", "transformers", "autonlp" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sample_input.pkl", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
abhishek
18
transformers
--- tags: autonlp language: ja widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-japanese-sentiment --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 59362 ## Validation Metrics - Loss: 0.13092292845249176 - Accuracy: 0.9527127414314258 - Precision: 0.9634070704982427 - Recall: 0.9842171959602166 - AUC: 0.9667289746092403 - F1: 0.9737009564152002 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-japanese-sentiment-59362 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-japanese-sentiment-59362", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-japanese-sentiment-59362", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
abhishek/autonlp-japanese-sentiment-59363
2021-05-18T22:56:15.000Z
[ "pytorch", "jax", "bert", "text-classification", "ja", "dataset:abhishek/autonlp-data-japanese-sentiment", "transformers", "autonlp" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sample_input.pkl", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
abhishek
1,002
transformers
--- tags: autonlp language: ja widget: - text: "🤗AutoNLPが大好きです" datasets: - abhishek/autonlp-data-japanese-sentiment --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 59363 ## Validation Metrics - Loss: 0.12651239335536957 - Accuracy: 0.9532079853817648 - Precision: 0.9729688278823665 - Recall: 0.9744633462616643 - AUC: 0.9717333684823413 - F1: 0.9737155136027014 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-japanese-sentiment-59363 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-japanese-sentiment-59363", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-japanese-sentiment-59363", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
abjbpi/DS_small
2021-06-04T11:23:14.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
abjbpi
29
transformers
--- tags: - conversational --- # Model v2
abjbpi/Dwight_Schrute
2021-06-04T11:43:31.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
abjbpi
392
transformers
--- tags: - conversational --- # My Awesome Model
abryee/TigXLNet
2021-01-10T14:29:08.000Z
[ "pytorch", "xlnet", "arxiv:2006.07698", "transformers" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
abryee
43
transformers
# Transferring Monolingual Model to Low-Resource Language: The Case Of Tigrinya: ## Proposed Method: <img src="data/proposed.png" height = "330" width ="760" > The proposed method transfers a mono-lingual Transformer model into new target language at lexical level by learning new token embeddings. All implementation in this repo uses XLNet as a source Transformer model, however, other Transformer models can also be used similarly. ## Main files: All files are IPython Notebook files which can be excuted simply in Google Colab. - train.ipynb : Fine-tunes XLNet (mono-lingual transformer) on new target language (Tigrinya) sentiment analysis dataset. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bSSrKE-TSphUyrNB2UWhFI-Bkoz0a5l0?usp=sharing) - test.ipynb : Evaluates the fine-tuned model on test data. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/17R1lvRjxILVNk971vzZT79o2OodwaNIX?usp=sharing) - token_embeddings.ipynb : Trains a word2vec token embeddings for Tigrinya language. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1hCtetAllAjBw28EVQkJFpiKdFtXmuxV7?usp=sharing) - process_Tigrinya_comments.ipynb : Extracts Tigrinya comments from mixed language contents. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-ndLlBV-iLZNBW3Z8OfKAqUUCjvGbdZU?usp=sharing) - extract_YouTube_comments.ipynb : Downloads available comments from a YouTube channel ID. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1b7G85wHKe18y45JIDtvDJdO5dOkRmDdp?usp=sharing) - auto_labelling.ipynb : Automatically labels Tigrinya comments in to positive or negative sentiments based on [Emoji's sentiment](http://kt.ijs.si/data/Emoji_sentiment_ranking/). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wnZf7CBBCIr966vRUITlxKCrANsMPpV7?usp=sharing) ## Tigrinya Tokenizer: A [sentencepiece](https://github.com/google/sentencepiece) based tokenizer for Tigrinya has been released to the public and can be accessed as in the following: from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("abryee/TigXLNet") tokenizer.tokenize("ዋዋዋው እዛ ፍሊም ካብተን ዘድንቀን ሓንቲ ኢያ ሞ ብጣዕሚ ኢና ነመስግን ሓንቲ ክብላ ደልየ ዘሎኹ ሓደራኣኹም ኣብ ጊዜኹም ተረክቡ") ## TigXLNet: A new general purpose transformer model for low-resource language Tigrinya is also released to the public and be accessed as in the following: from transformers import AutoConfig, AutoModel config = AutoConfig.from_pretrained("abryee/TigXLNet") config.d_head = 64 model = AutoModel.from_pretrained("abryee/TigXLNet", config=config) ## Evaluation: The proposed method is evaluated using two datasets: - A newly created sentiment analysis dataset for low-resource language (Tigriyna). <table> <tr> <td> <table> <thead> <tr> <th><sub>Models</sub></th> <th><sub>Configuration</sub></th> <th><sub>F1-Score</sub></th> </tr> </thead> <tbody> <tr> <td rowspan=3><sub>BERT</sub></td> <td rowspan=1><sub>+Frozen BERT weights</sub></td> <td><sub>54.91</sub></td> </tr> <tr> <td rowspan=1><sub>+Random embeddings</sub></td> <td><sub>74.26</sub></td> </tr> <tr> <td rowspan=1><sub>+Frozen token embeddings</sub></td> <td><sub>76.35</sub></td> </tr> <tr> <td rowspan=3><sub>mBERT</sub></td> <td rowspan=1><sub>+Frozen mBERT weights</sub></td> <td><sub>57.32</sub></td> </tr> <tr> <td rowspan=1><sub>+Random embeddings</sub></td> <td><sub>76.01</sub></td> </tr> <tr> <td rowspan=1><sub>+Frozen token embeddings</sub></td> <td><sub>77.51</sub></td> </tr> <tr> <td rowspan=3><sub>XLNet</sub></td> <td rowspan=1><sub>+Frozen XLNet weights</sub></td> <td><strong><sub>68.14</sub></strong></td> </tr> <tr> <td rowspan=1><sub>+Random embeddings</sub></td> <td><strong><sub>77.83</sub></strong></td> </tr> <tr> <td rowspan=1><sub>+Frozen token embeddings</sub></td> <td><strong><sub>81.62</sub></strong></td> </tr> </tbody> </table> </td> <td><img src="data/effect_of_dataset_size.png" alt="3" width = 480px height = 280px></td> </tr> </table> - Cross-lingual Sentiment dataset ([CLS](https://zenodo.org/record/3251672#.Xs65VzozbIU)). <table> <thead> <tr> <th rowspan=2><sub>Models</sub></th> <th rowspan=1 colspan=3><sub>English</sub></th> <th rowspan=1 colspan=3><sub>German</sub></th> <th rowspan=1 colspan=3><sub>French</sub></th> <th rowspan=1 colspan=3><sub>Japanese</sub></th> <th rowspan=2><sub>Average</sub></th> </tr> <tr> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> </tr> </thead> <tbody> <tr> <td colspan=1><sub>XLNet</sub></td> <td colspan=1><sub><strong>92.90</strong></sub></td> <td colspan=1><sub><strong>93.31</strong></sub></td> <td colspan=1><sub><strong>92.02</strong></sub></td> <td colspan=1><sub>85.23</sub></td> <td colspan=1><sub>83.30</sub></td> <td colspan=1><sub>83.89</sub></td> <td colspan=1><sub>73.05</sub></td> <td colspan=1><sub>69.80</sub></td> <td colspan=1><sub>70.12</sub></td> <td colspan=1><sub>83.20</sub></td> <td colspan=1><sub><strong>86.07</strong></sub></td> <td colspan=1><sub>85.24</sub></td> <td colspan=1><sub>83.08</sub></td> </tr> <tr> <td colspan=1><sub>mBERT</sub></td> <td colspan=1><sub>92.78</sub></td> <td colspan=1><sub>90.30</sub></td> <td colspan=1><sub>91.88</sub></td> <td colspan=1><sub><strong>88.65</strong></sub></td> <td colspan=1><sub><strong>85.85</strong></sub></td> <td colspan=1><sub><strong>90.38</strong></sub></td> <td colspan=1><sub><strong>91.09</strong></sub></td> <td colspan=1><sub><strong>88.57</strong></sub></td> <td colspan=1><sub><strong>93.67</strong></sub></td> <td colspan=1><sub><strong>84.35</strong></sub></td> <td colspan=1><sub>81.77</sub></td> <td colspan=1><sub><strong>87.53</strong></sub></td> <td colspan=1><sub><strong>88.90</strong></sub></td> </tr> </tbody> </table> ## Dataset used for this paper: We have constructed new sentiment analysis dataset for Tigrinya language and it can be found in the zip file (Tigrinya Sentiment Analysis Dataset) ## Citing our paper: Our paper can be accessed from ArXiv [link](https://arxiv.org/pdf/2006.07698.pdf), and please consider citing our work. @misc{tela2020transferring, title={Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya}, author={Abrhalei Tela and Abraham Woubie and Ville Hautamaki}, year={2020}, eprint={2006.07698}, archivePrefix={arXiv}, primaryClass={cs.CL} }
absa/basic_reference_recognizer-lapt-0.1
2020-10-29T11:39:52.000Z
[ "reference_recognizer", "transformers" ]
[ ".gitattributes", "config.json" ]
absa
13
transformers
absa/basic_reference_recognizer-rest-0.1
2020-10-29T11:39:42.000Z
[ "reference_recognizer", "transformers" ]
[ ".gitattributes", "config.json" ]
absa
15
transformers
absa/bert-lapt-0.1
2021-05-19T11:34:12.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
absa
16
transformers
absa/bert-lapt-0.2
2021-05-19T11:34:39.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
absa
24
transformers
absa/bert-rest-0.1
2021-05-19T11:35:05.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
absa
19
transformers
absa/bert-rest-0.2
2021-05-19T11:35:32.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
absa
16
transformers
absa/bert-rest-lapt-0.1
2021-05-19T11:35:58.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
absa
15
transformers
absa/classifier-lapt-0.2.1
2021-05-19T11:36:22.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "callbacks.bin", "config.json", "experiment.log", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
absa
12
transformers
absa/classifier-lapt-0.2
2021-05-19T11:36:56.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "callbacks.bin", "config.json", "experiment.log", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
absa
18
transformers
absa/classifier-rest-0.1
2021-05-19T11:37:20.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
absa
12
transformers