modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
absa/classifier-rest-0.2.1
2021-05-19T11:37:38.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "callbacks.bin", "config.json", "experiment.log", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
absa
16
transformers
absa/classifier-rest-0.2
2021-05-19T11:37:54.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "callbacks.bin", "config.json", "experiment.log", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
absa
6,153
transformers
acoadmarmon/un-ner
2021-05-25T00:22:33.000Z
[]
[ ".gitattributes" ]
acoadmarmon
0
activebus/BERT-DK_laptop
2021-05-18T23:00:58.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
activebus
32
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT-DK_laptop` is trained from 100MB laptop corpus under `Electronics/Computers & Accessories/Laptops`. ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). `BERT-DK_laptop` is trained from 100MB laptop corpus under `Electronics/Computers & Accessories/Laptops`. ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-DK_laptop") model = AutoModel.from_pretrained("activebus/BERT-DK_laptop") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
activebus/BERT-DK_rest
2021-05-18T23:02:24.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
activebus
30
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT-DK_rest` is trained from 1G (19 types) restaurants from Yelp. ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-DK_rest") model = AutoModel.from_pretrained("activebus/BERT-DK_rest") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
activebus/BERT-PT_laptop
2021-05-18T23:03:36.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
activebus
38
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT-DK_laptop` is trained from 100MB laptop corpus under `Electronics/Computers & Accessories/Laptops`. `BERT-PT_*` addtionally uses SQuAD 1.1. ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-PT_laptop") model = AutoModel.from_pretrained("activebus/BERT-PT_laptop") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
activebus/BERT-PT_rest
2021-05-18T23:04:31.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
activebus
20
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT-DK_rest` is trained from 1G (19 types) restaurants from Yelp. `BERT-PT_*` addtionally uses SQuAD 1.1. ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-PT_rest") model = AutoModel.from_pretrained("activebus/BERT-PT_rest") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
activebus/BERT-XD_Review
2021-05-19T11:38:28.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
activebus
108
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. Please visit https://github.com/howardhsu/BERT-for-RRC-ABSA for details. `BERT-XD_Review` is a cross-domain (beyond just `laptop` and `restaurant`) language model, where each example is from a single product / restaurant with the same rating, post-trained (fine-tuned) on a combination of 5-core Amazon reviews and all Yelp data, expected to be 22 G in total. It is trained for 4 epochs on `bert-base-uncased`. The preprocessing code [here](https://github.com/howardhsu/BERT-for-RRC-ABSA/transformers). ## Model Description The original model is from `BERT-base-uncased`. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-XD_Review") model = AutoModel.from_pretrained("activebus/BERT-XD_Review") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) `BERT_Review` is expected to have similar performance on domain-specific tasks (such as aspect extraction) as `BERT-DK`, but much better on general tasks such as aspect sentiment classification (different domains mostly share similar sentiment words). ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
activebus/BERT_Review
2021-05-18T23:05:54.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
activebus
541
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT_Review` is cross-domain (beyond just `laptop` and `restaurant`) language model with one example from randomly mixed domains, post-trained (fine-tuned) on a combination of 5-core Amazon reviews and all Yelp data, expected to be 22 G in total. It is trained for 4 epochs on `bert-base-uncased`. The preprocessing code [here](https://github.com/howardhsu/BERT-for-RRC-ABSA/transformers). ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT_Review") model = AutoModel.from_pretrained("activebus/BERT_Review") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) `BERT_Review` is expected to have similar performance on domain-specific tasks (such as aspect extraction) as `BERT-DK`, but much better on general tasks such as aspect sentiment classification (different domains mostly share similar sentiment words). ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
adalbertojunior/PTT5-SMALL-SUM
2020-12-11T21:31:35.000Z
[ "pytorch", "t5", "seq2seq", "pt", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
adalbertojunior
30
transformers
--- language: pt --- # PTT5-SMALL-SUM ## Model description This model was trained to summarize texts in portuguese based on ```unicamp-dl/ptt5-small-portuguese-vocab``` #### How to use ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('adalbertojunior/PTT5-SMALL-SUM') t5 = T5ForConditionalGeneration.from_pretrained('adalbertojunior/PTT5-SMALL-SUM') text="Esse é um exemplo de sumarização." input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) generated_ids = t5.generate( input_ids=input_ids, num_beams=1, max_length=40, #repetition_penalty=2.5 ).squeeze() predicted_span = tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) ```
adalbertojunior/bert-prompt-sim-pt
2021-05-18T23:07:02.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
adalbertojunior
6
transformers
adalbertojunior/bert_regression
2021-05-19T11:38:41.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
adalbertojunior
15
transformers
adamlin/ClinicalBert_all_notes
2019-12-25T17:08:00.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
adamlin
19
transformers
adamlin/ClinicalBert_disch
2019-12-25T17:08:32.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
adamlin
19
transformers
adamlin/NCBI_BERT_pubmed_mimic_uncased_base_transformers
2019-12-25T17:05:13.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
adamlin
19
transformers
adamlin/NCBI_BERT_pubmed_mimic_uncased_large_transformers
2019-12-25T17:08:38.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
adamlin
13
transformers
adamlin/bert-distil-chinese
2021-05-19T11:39:14.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
adamlin
72
transformers
adamlin/csp
2021-06-02T08:10:21.000Z
[ "pytorch", "mt5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "optimizer.pt", "pytorch_model.bin", "rng_state.pth", "scheduler.pt", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin" ]
adamlin
14
transformers
adamlin/cup
2021-06-02T08:03:44.000Z
[]
[ ".gitattributes" ]
adamlin
0
adamlin/distilbert-base-cased-sgd_qa-step5000
2021-02-09T15:02:35.000Z
[ "pytorch", "distilbert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
adamlin
6
transformers
adamlin/tmp
2021-06-04T06:29:41.000Z
[]
[ ".gitattributes" ]
adamlin
0
adamlin/tmpjstpbdt1
2021-04-29T15:38:24.000Z
[]
[ ".gitattributes" ]
adamlin
0
adamlin/tmppdzei5bc
2021-05-09T06:56:14.000Z
[]
[ ".gitattributes" ]
adamlin
0
adamlin/tus_21-delex_5000
2021-04-08T14:25:30.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "merges.txt", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
adamlin
7
transformers
adelevie/distilbert-gsa-eula-opp
2020-08-20T13:31:35.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
adelevie
13
transformers
adilism/wav2vec2-large-xlsr-kazakh
2021-04-01T09:55:48.000Z
[ "pytorch", "wav2vec2", "kk", "dataset:kazakh_speech_corpus", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "utils.py", "vocab.json" ]
adilism
8
transformers
--- language: kk datasets: - kazakh_speech_corpus metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2-XLSR-53 Kazakh by adilism results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Kazakh Speech Corpus v1.1 type: kazakh_speech_corpus args: kk metrics: - name: Test WER type: wer value: 19.65 --- # Wav2Vec2-Large-XLSR-53-Kazakh Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for Kazakh ASR using the [Kazakh Speech Corpus v1.1](https://issai.nu.edu.kz/kz-speech-corpus/?version=1.1) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from utils import get_test_dataset test_dataset = get_test_dataset("ISSAI_KSC_335RS_v1.1") processor = Wav2Vec2Processor.from_pretrained("wav2vec2-large-xlsr-kazakh") model = Wav2Vec2ForCTC.from_pretrained("wav2vec2-large-xlsr-kazakh") # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the test set of [Kazakh Speech Corpus v1.1](https://issai.nu.edu.kz/kz-speech-corpus/?version=1.1). To evaluate, download the [archive](https://www.openslr.org/resources/102/ISSAI_KSC_335RS_v1.1_flac.tar.gz), untar and pass the path to data to `get_test_dataset` as below: ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from utils import get_test_dataset test_dataset = get_test_dataset("ISSAI_KSC_335RS_v1.1") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("adilism/wav2vec2-large-xlsr-kazakh") model = Wav2Vec2ForCTC.from_pretrained("adilism/wav2vec2-large-xlsr-kazakh") model.to("cuda") # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) def evaluate(batch): inputs = processor(batch["text"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 19.65% ## Training The Kazakh Speech Corpus v1.1 `train` dataset was used for training.
adilism/wav2vec2-large-xlsr-kyrgyz
2021-03-28T21:46:55.000Z
[ "pytorch", "wav2vec2", "ky", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
adilism
7
transformers
--- language: ky datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: {Wav2Vec2-XLSR-53 Kyrgyz by adilism} results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ky type: common_voice args: ky metrics: - name: Test WER type: wer value: 34.08 --- # Wav2Vec2-Large-XLSR-53-Kyrgyz Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Kyrgyz using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ky", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("adilism/wav2vec2-large-xlsr-kyrgyz") model = Wav2Vec2ForCTC.from_pretrained("adilism/wav2vec2-large-xlsr-kyrgyz") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Kyrgyz test data of Common Voice: ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ky", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("adilism/wav2vec2-large-xlsr-kyrgyz") model = Wav2Vec2ForCTC.from_pretrained("adilism/wav2vec2-large-xlsr-kyrgyz") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", "—", "–", "”"] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 34.08 % ## Training The Common Voice `train` and `validation` datasets were used for training.
aditeyabaral/Yashi-33k-small
2021-06-08T07:54:45.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
aditeyabaral
20
transformers
--- tags: - conversational --- # Model trained on WhatsApp conversations with Yashi
aditeyabaral/Yashi-40k-small
2021-06-08T07:54:58.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
aditeyabaral
11
transformers
--- tags: - conversational --- # Model trained on WhatsApp conversations with Yashi
aditeyabaral/Yashi-50k-small
2021-06-08T04:55:21.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
aditeyabaral
79
transformers
--- tags: - conversational --- # Model trained on WhatsApp conversations with Yashi
aditeyabaral/Yashi-IG-aditeyabaral-main-pvt
2021-06-09T16:26:46.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
aditeyabaral
36
transformers
--- tags: - conversational --- # Model trained on Instagram conversations with Yashi from my account
aditeyabaral/Yashi-IG-aditeyabaral-main
2021-06-09T17:21:56.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
aditeyabaral
18
transformers
--- tags: - conversational --- # Model trained on Instagram conversations with Yashi from my account
adnankhawaja/RomanUBerta
2021-05-29T20:40:45.000Z
[]
[ ".gitattributes" ]
adnankhawaja
0
adresgezgini/Finetuned-SentiBERtr-Pos-Neg-Reviews
2021-05-18T23:09:04.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "model_args.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
adresgezgini
22
transformers
adresgezgini/Turkish-GPT-2-Finetuned_digital_ads
2021-05-21T11:52:06.000Z
[ "pytorch", "tf", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "flax_model.msgpack", "merges.docx", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
adresgezgini
39
transformers
adresgezgini/turkish-gpt-2
2021-05-21T11:53:09.000Z
[ "pytorch", "tf", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.json" ]
adresgezgini
207
transformers
AdresGezgini Inc. R&D Center Turkish GPT-2 Model Trained with Turkish Wiki Corpus for 10 Epochs
adresgezgini/wav2vec-tr-lite-AG
2021-03-30T06:10:16.000Z
[ "pytorch", "wav2vec2", "tr", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "optimizer-002.pt", "preprocessor_config.json", "pytorch_model.bin", "scheduler.pt", "trainer_state.json", "training_args.bin", "vocab.json" ]
adresgezgini
8
transformers
--- language: tr datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Turkish by Davut Emre TASAR results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer --- # wav2vec-tr-lite-AG ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG") model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG") resampler = torchaudio.transforms.Resample(48_000, 16_000) **Test Result**: 27.30 % [here](https://adresgezgini.com)
adriansyahdr/adrBert-base-p1
2021-05-18T23:10:07.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "training_args.bin", "vocab.txt" ]
adriansyahdr
8
transformers
adriansyahdr/adrBert-base-p2
2021-05-18T23:11:14.000Z
[ "pytorch", "tf", "jax", "bert", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "training_args.bin", "vocab.txt" ]
adriansyahdr
8
transformers
adzcodez/TokenClassificationTest
2021-03-16T14:18:09.000Z
[ "pytorch", "distilbert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
adzcodez
6
transformers
distilbert-base-uncased finetuned on the conll2003 dataset for NER.
aerkanc/electra-base-turkish-cased-discriminator
2020-11-23T19:09:58.000Z
[]
[ ".gitattributes" ]
aerkanc
0
af-ai-center/bert-base-swedish-uncased
2021-05-18T23:12:14.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "vocab.txt" ]
af-ai-center
700
transformers
af-ai-center/bert-large-swedish-uncased
2021-05-18T23:14:05.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "vocab.txt" ]
af-ai-center
185
transformers
aga11313/test
2021-03-18T12:38:00.000Z
[]
[ ".gitattributes" ]
aga11313
0
agiagoulas/bert-pss
2021-05-18T23:16:17.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
agiagoulas
21
transformers
bert-base-uncased model trained on the tobacco800 dataset for the task of page-stream-segmentation. [Link](https://github.com/agiagoulas/page-stream-segmentation) to the GitHub Repo with the model implementation.
aheba31/blablabal
2021-02-10T09:52:13.000Z
[]
[ ".gitattributes" ]
aheba31
0
ahmedattia143/roberta_squadv1_base
2021-05-30T11:42:11.000Z
[ "pytorch", "roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ahmedattia143
298
transformers
ahmednasserswe/sentence_distilbert
2020-06-09T09:02:24.000Z
[ "pytorch", "distilbert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_distilbert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
ahmednasserswe
10
transformers
ahotrod/albert_xxlargev1_squad2_512
2020-12-11T21:31:38.000Z
[ "pytorch", "tf", "albert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "albert_xxlargev1_sqd2_512.sh", "config.json", "loss_tensorboard.png", "lrate_tensorboard.png", "nbest_predictions_.json", "null_odds_.json", "nvidia-smi.png", "predictions_.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json", "training_args.bin" ]
ahotrod
41,794
transformers
## Albert xxlarge version 1 language model fine-tuned on SQuAD2.0 ### (updated 30Sept2020) with the following results: ``` exact: 86.11134506864315 f1: 89.35371214945009 total': 11873 HasAns_exact': 83.56950067476383 HasAns_f1': 90.06353312254078 HasAns_total': 5928 NoAns_exact': 88.64592094196804 NoAns_f1': 88.64592094196804 NoAns_total': 5945 best_exact': 86.11134506864315 best_exact_thresh': 0.0 best_f1': 89.35371214944985 best_f1_thresh': 0.0 ``` ### from script: ``` python ${EXAMPLES}/run_squad.py \ --model_type albert \ --model_name_or_path albert-xxlarge-v1 \ --do_train \ --do_eval \ --train_file ${SQUAD}/train-v2.0.json \ --predict_file ${SQUAD}/dev-v2.0.json \ --version_2_with_negative \ --do_lower_case \ --num_train_epochs 3 \ --max_steps 8144 \ --warmup_steps 814 \ --learning_rate 3e-5 \ --max_seq_length 512 \ --doc_stride 128 \ --per_gpu_train_batch_size 6 \ --gradient_accumulation_steps 8 \ --per_gpu_eval_batch_size 48 \ --fp16 \ --fp16_opt_level O1 \ --threads 12 \ --logging_steps 50 \ --save_steps 3000 \ --overwrite_output_dir \ --output_dir ${MODEL_PATH} ``` ### using the following software & system: ``` Transformers: 3.1.0 PyTorch: 1.6.0 TensorFlow: 2.3.1 Python: 3.8.1 OS: Linux-5.4.0-48-generic-x86_64-with-glibc2.10 CPU/GPU: Intel i9-9900K / NVIDIA Titan RTX 24GB ```
ahotrod/electra_large_discriminator_squad2_512
2020-12-11T21:31:42.000Z
[ "pytorch", "tf", "electra", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "electra_large_squad2_512.sh", "nvidia-smi.png", "pytorch_model.bin", "special_tokens_map.json", "tensorboard_learning_rate.png", "tensorboard_loss.png", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
ahotrod
5,221
transformers
## ELECTRA_large_discriminator language model fine-tuned on SQuAD2.0 ### with the following results: ``` "exact": 87.09677419354838, "f1": 89.98343832723452, "total": 11873, "HasAns_exact": 84.66599190283401, "HasAns_f1": 90.44759839056285, "HasAns_total": 5928, "NoAns_exact": 89.52060555088309, "NoAns_f1": 89.52060555088309, "NoAns_total": 5945, "best_exact": 87.09677419354838, "best_exact_thresh": 0.0, "best_f1": 89.98343832723432, "best_f1_thresh": 0.0 ``` ### from script: ``` python ${EXAMPLES}/run_squad.py \ --model_type electra \ --model_name_or_path google/electra-large-discriminator \ --do_train \ --do_eval \ --train_file ${SQUAD}/train-v2.0.json \ --predict_file ${SQUAD}/dev-v2.0.json \ --version_2_with_negative \ --do_lower_case \ --num_train_epochs 3 \ --warmup_steps 306 \ --weight_decay 0.01 \ --learning_rate 3e-5 \ --max_grad_norm 0.5 \ --adam_epsilon 1e-6 \ --max_seq_length 512 \ --doc_stride 128 \ --per_gpu_train_batch_size 8 \ --gradient_accumulation_steps 16 \ --per_gpu_eval_batch_size 128 \ --fp16 \ --fp16_opt_level O1 \ --threads 12 \ --logging_steps 50 \ --save_steps 1000 \ --overwrite_output_dir \ --output_dir ${MODEL_PATH} ``` ### using the following system & software: ``` Transformers: 2.11.0 PyTorch: 1.5.0 TensorFlow: 2.2.0 Python: 3.8.1 OS/Platform: Linux-5.3.0-59-generic-x86_64-with-glibc2.10 CPU/GPU: Intel i9-9900K / NVIDIA Titan RTX 24GB ```
ahotrod/roberta_large_squad2
2021-05-20T12:48:52.000Z
[ "pytorch", "tf", "jax", "roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "roberta_TRex_nvidia-smi.png", "roberta_large_squad2.sh", "special_tokens_map.json", "tensorboard_loss.png", "tensorboard_lrate.png", "tf_model.h5", "tokenizer_config.json", "vocab.json" ]
ahotrod
191
transformers
## RoBERTa-large language model fine-tuned on SQuAD2.0 ### with the following results: ``` "exact": 84.46896319380106, "f1": 87.85388093408943, "total": 11873, "HasAns_exact": 81.37651821862349, "HasAns_f1": 88.1560607844881, "HasAns_total": 5928, "NoAns_exact": 87.55256518082422, "NoAns_f1": 87.55256518082422, "NoAns_total": 5945, "best_exact": 84.46896319380106, "best_exact_thresh": 0.0, "best_f1": 87.85388093408929, "best_f1_thresh": 0.0 ``` ### from script: ``` python ${EXAMPLES}/run_squad.py \ --model_type roberta \ --model_name_or_path roberta-large \ --do_train \ --do_eval \ --train_file ${SQUAD}/train-v2.0.json \ --predict_file ${SQUAD}/dev-v2.0.json \ --version_2_with_negative \ --do_lower_case \ --num_train_epochs 3 \ --warmup_steps 1642 \ --weight_decay 0.01 \ --learning_rate 3e-5 \ --adam_epsilon 1e-6 \ --max_seq_length 512 \ --doc_stride 128 \ --per_gpu_train_batch_size 8 \ --gradient_accumulation_steps 6 \ --per_gpu_eval_batch_size 48 \ --threads 12 \ --logging_steps 50 \ --save_steps 2000 \ --overwrite_output_dir \ --output_dir ${MODEL_PATH} $@ ``` ### using the following system & software: ``` Transformers: 2.7.0 PyTorch: 1.4.0 TensorFlow: 2.1.0 Python: 3.7.7 OS/Platform: Linux-5.3.0-46-generic-x86_64-with-debian-buster-sid CPU/GPU: Intel i9-9900K / NVIDIA Titan RTX 24GB ```
ai4bharat/indic-bert
2021-04-12T09:06:47.000Z
[ "pytorch", "albert", "en", "dataset:AI4Bharat IndicNLP Corpora", "transformers", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "spiece.model", "spiece.vocab", "tf_model.ckpt.data-00000-of-00001", "tf_model.ckpt.index", "tf_model.ckpt.meta" ]
ai4bharat
2,272
transformers
--- language: en license: mit datasets: - AI4Bharat IndicNLP Corpora --- # IndicBERT IndicBERT is a multilingual ALBERT model pretrained exclusively on 12 major Indian languages. It is pre-trained on our novel monolingual corpus of around 9 billion tokens and subsequently evaluated on a set of diverse tasks. IndicBERT has much fewer parameters than other multilingual models (mBERT, XLM-R etc.) while it also achieves a performance on-par or better than these models. The 12 languages covered by IndicBERT are: Assamese, Bengali, English, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu. The code can be found [here](https://github.com/divkakwani/indic-bert). For more information, checkout our [project page](https://indicnlp.ai4bharat.org/) or our [paper](https://indicnlp.ai4bharat.org/papers/arxiv2020_indicnlp_corpus.pdf). ## Pretraining Corpus We pre-trained indic-bert on AI4Bharat's monolingual corpus. The corpus has the following distribution of languages: | Language | as | bn | en | gu | hi | kn | | | ----------------- | ------ | ------ | ------ | ------ | ------ | ------ | ------- | | **No. of Tokens** | 36.9M | 815M | 1.34B | 724M | 1.84B | 712M | | | **Language** | **ml** | **mr** | **or** | **pa** | **ta** | **te** | **all** | | **No. of Tokens** | 767M | 560M | 104M | 814M | 549M | 671M | 8.9B | ## Evaluation Results IndicBERT is evaluated on IndicGLUE and some additional tasks. The results are summarized below. For more details about the tasks, refer our [official repo](https://github.com/divkakwani/indic-bert) #### IndicGLUE Task | mBERT | XLM-R | IndicBERT -----| ----- | ----- | ------ News Article Headline Prediction | 89.58 | 95.52 | **95.87** Wikipedia Section Title Prediction| **73.66** | 66.33 | 73.31 Cloze-style multiple-choice QA | 39.16 | 27.98 | **41.87** Article Genre Classification | 90.63 | 97.03 | **97.34** Named Entity Recognition (F1-score) | **73.24** | 65.93 | 64.47 Cross-Lingual Sentence Retrieval Task | 21.46 | 13.74 | **27.12** Average | 64.62 | 61.09 | **66.66** #### Additional Tasks Task | Task Type | mBERT | XLM-R | IndicBERT -----| ----- | ----- | ------ | ----- BBC News Classification | Genre Classification | 60.55 | **75.52** | 74.60 IIT Product Reviews | Sentiment Analysis | 74.57 | **78.97** | 71.32 IITP Movie Reviews | Sentiment Analaysis | 56.77 | **61.61** | 59.03 Soham News Article | Genre Classification | 80.23 | **87.6** | 78.45 Midas Discourse | Discourse Analysis | 71.20 | **79.94** | 78.44 iNLTK Headlines Classification | Genre Classification | 87.95 | 93.38 | **94.52** ACTSA Sentiment Analysis | Sentiment Analysis | 48.53 | 59.33 | **61.18** Winograd NLI | Natural Language Inference | 56.34 | 55.87 | **56.34** Choice of Plausible Alternative (COPA) | Natural Language Inference | 54.92 | 51.13 | **58.33** Amrita Exact Paraphrase | Paraphrase Detection | **93.81** | 93.02 | 93.75 Amrita Rough Paraphrase | Paraphrase Detection | 83.38 | 82.20 | **84.33** Average | | 69.84 | **74.42** | 73.66 \* Note: all models have been restricted to a max_seq_length of 128. ## Downloads The model can be downloaded [here](https://storage.googleapis.com/ai4bharat-public-indic-nlp-corpora/models/indic-bert-v1.tar.gz). Both tf checkpoints and pytorch binaries are included in the archive. Alternatively, you can also download it from [Huggingface](https://huggingface.co/ai4bharat/indic-bert). ## Citing If you are using any of the resources, please cite the following article: ``` @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ``` We would like to hear from you if: - You are using our resources. Please let us know how you are putting these resources to use. - You have any feedback on these resources. ## License The IndicBERT code (and models) are released under the MIT License. ## Contributors - Divyanshu Kakwani - Anoop Kunchukuttan - Gokul NC - Satish Golla - Avik Bhattacharyya - Mitesh Khapra - Pratyush Kumar This work is the outcome of a volunteer effort as part of [AI4Bharat initiative](https://ai4bharat.org). ## Contact - Anoop Kunchukuttan ([[email protected]](mailto:[email protected])) - Mitesh Khapra ([[email protected]](mailto:[email protected])) - Pratyush Kumar ([[email protected]](mailto:[email protected]))
aicast/bert_finetuning_test
2021-05-18T23:17:12.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results_mrpc.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json" ]
aicast
21
transformers
aidan-plenert-macdonald/gpt2-lv
2021-05-21T11:53:49.000Z
[ "tf", "gpt2", "transformers" ]
[ ".gitattributes", "config.json", "merges.txt", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.json" ]
aidan-plenert-macdonald
11
transformers
aidan-plenert-macdonald/model_lv_custom
2021-05-21T11:54:18.000Z
[ "tf", "gpt2", "transformers" ]
[ ".gitattributes", "config.json", "merges.txt", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.json" ]
aidan-plenert-macdonald
11
transformers
aidenz/bert
2021-04-14T02:06:52.000Z
[]
[ ".gitattributes" ]
aidenz
0
aimiekhe/yummv1
2021-06-06T02:38:56.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
aimiekhe
770
transformers
--- tags: - conversational --- # My Awesome Model
aimiekhe/yummv2
2021-06-06T03:04:24.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
aimiekhe
352
transformers
--- tags: - conversational --- # My Awesome Model
aing/demon-slayer-mugen-train-movie
2021-04-30T14:12:50.000Z
[]
[ ".gitattributes", "README.md" ]
aing
0
aing/demon-slayer-mugen-train
2021-04-29T17:59:15.000Z
[]
[ ".gitattributes", "README.md" ]
aing
0
aing/demon-slayer-the-movie-mugen-train
2021-04-25T17:42:46.000Z
[]
[ ".gitattributes", "README.md" ]
aing
0
aing/demon-slayer
2021-04-30T10:06:47.000Z
[]
[ ".gitattributes", "README.md" ]
aing
0
aing/full-play-demon-slayer-the-movie-mugen-train
2021-04-29T16:54:39.000Z
[]
[ ".gitattributes", "README.md" ]
aing
0
aing/full-stream-demon-slayer-the-movie-mugen-train
2021-04-28T14:29:12.000Z
[]
[ ".gitattributes", "README.md" ]
aing
0
aing/hd-movie-demon-slayer-the-movie-mugen-train
2021-04-27T06:37:35.000Z
[]
[ ".gitattributes", "README.md" ]
aing
0
aing/jedini-izlaz
2021-05-01T18:24:50.000Z
[]
[ ".gitattributes", "README.md" ]
aing
0
aing/pejwan
2021-04-24T17:43:32.000Z
[]
[ ".gitattributes", "README.md" ]
aing
0
aing/watch-demon-slayer-the-movie-mugen-train-2021
2021-04-27T14:35:54.000Z
[]
[ ".gitattributes", "README.md" ]
aing
0
ainize/GPT2-futurama-script
2021-05-21T11:58:18.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ainize
10
transformers
ainize/gpt2-mcu-script-large
2021-05-21T12:03:49.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ainize
14
transformers
ainize/gpt2-rnm-with-only-rick
2021-05-21T12:06:44.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ainize
17
transformers
### Model information Fine tuning data 1: https://www.kaggle.com/andradaolteanu/rickmorty-scripts Base model: e-tony/gpt2-rnm Epoch: 1 Train runtime: 3.4982 secs Loss: 3.0894 Training notebook: [Colab](https://colab.research.google.com/drive/1RawVxulLETFicWMY0YANUdP-H-e7Eeyc) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
ainize/gpt2-rnm-with-season-1
2021-05-21T12:08:00.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ainize
9
transformers
### Model information Fine tuning data 1: https://www.kaggle.com/andradaolteanu/rickmorty-scripts Base model: e-tony/gpt2-rnm Epoch: 3 Train runtime: 7.1779 secs Loss: 2.5694 Training notebook: [Colab](https://colab.research.google.com/drive/12NvO1SIZevF8ybJqfN9O21I3i9bU1dOO#scrollTo=KUsyn02WWmf5) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
ainize/gpt2-rnm-with-spongebob
2021-05-21T12:09:02.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ainize
118
transformers
### Model information Fine tuning data 1: https://www.kaggle.com/andradaolteanu/rickmorty-scripts Fine tuning data 2: https://www.kaggle.com/mikhailgaerlan/spongebob-squarepants-completed-transcripts Base model: e-tony/gpt2-rnm Epoch: 2 Train runtime: 790.0612 secs Loss: 2.8569 API page: [Ainize](https://ainize.ai/fpem123/GPT2-Rick-N-Morty-with-SpongeBob?branch=master) Demo page: [End-point](https://master-gpt2-rick-n-morty-with-sponge-bob-fpem123.endpoint.ainize.ai/) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
ainize/gpt2-simpsons-script-large
2021-05-21T12:13:28.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ainize
11
transformers
ainize/gpt2-spongebob-script-large
2021-05-21T12:18:42.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ainize
8
transformers
### Model information Fine tuning data: https://www.kaggle.com/mikhailgaerlan/spongebob-squarepants-completed-transcripts License: CC-BY-SA Base model: gpt-2 large Epoch: 50 Train runtime: 14723.0716 secs Loss: 0.0268 API page: [Ainize](https://ainize.ai/fpem123/GPT2-Spongebob?branch=master) Demo page: [End-point](https://master-gpt2-spongebob-fpem123.endpoint.ainize.ai/) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
airKlizz/bart-large-cnn-multi-en-wiki-news
2020-06-10T08:13:05.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
109
transformers
airKlizz/bart-large-multi-combine-wiki-news
2020-06-11T10:57:33.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
20
transformers
airKlizz/bart-large-multi-de-wiki-news
2020-06-10T11:38:23.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
31
transformers
airKlizz/bart-large-multi-en-wiki-news
2020-06-09T14:41:16.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
18
transformers
airKlizz/bart-large-multi-fr-wiki-news
2020-06-10T08:43:35.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
20
transformers
airKlizz/bert2bert-multi-de-wiki-news
2020-06-10T08:36:47.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
airKlizz
22
transformers
airKlizz/bert2bert-multi-en-wiki-news
2020-08-11T09:05:53.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
airKlizz
10
transformers
airKlizz/bert2bert-multi-fr-wiki-news
2020-08-11T09:05:55.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
airKlizz
19
transformers
airKlizz/distilbart-12-3-multi-combine-wiki-news
2020-08-26T10:25:17.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
20
transformers
airKlizz/distilbart-12-6-multi-combine-wiki-news
2020-08-21T07:35:00.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
26
transformers
airKlizz/distilbart-3-3-multi-combine-wiki-news
2020-08-21T12:24:19.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
20
transformers
airKlizz/distilbart-6-12-multi-combine-wiki-news
2020-08-22T07:50:42.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
19
transformers
airKlizz/distilbart-6-6-multi-combine-wiki-news
2020-08-22T07:53:04.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
17
transformers
airKlizz/distilbart-multi-combine-wiki-news
2020-07-03T09:57:18.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
airKlizz
22
transformers
airKlizz/t5-base-multi-combine-wiki-news
2020-06-10T18:34:41.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
airKlizz
13
transformers
airKlizz/t5-base-multi-de-wiki-news
2020-06-10T13:06:37.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
airKlizz
16
transformers
airKlizz/t5-base-multi-en-wiki-news
2020-06-10T08:14:46.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
airKlizz
16
transformers
airKlizz/t5-base-multi-fr-wiki-news
2020-06-10T08:26:38.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
airKlizz
22
transformers
airKlizz/t5-base-with-title-multi-de-wiki-news
2020-06-10T08:40:52.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
airKlizz
25
transformers
airKlizz/t5-base-with-title-multi-en-wiki-news
2020-06-10T08:16:44.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
airKlizz
19
transformers
airKlizz/t5-base-with-title-multi-fr-wiki-news
2020-06-10T08:28:43.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
airKlizz
18
transformers
airKlizz/t5-small-multi-combine-wiki-news
2020-07-04T14:25:03.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
airKlizz
19
transformers
airesearch/bert-base-multilingual-cased-finetuned
2021-05-19T11:39:44.000Z
[ "bert", "masked-lm", "arxiv:1810.04805", "arxiv:2101.09635", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json" ]
airesearch
23
transformers
# Finetuend `bert-base-multilignual-cased` model on Thai sequence and token classification datasets <br> Finetuned XLM Roberta BASE model on Thai sequence and token classification datasets The script and documentation can be found at [this repository](https://github.com/vistec-AI/thai2transformers). <br> ## Model description <br> We use the pretrained cross-lingual BERT model (mBERT) as proposed by [[Devlin et al., 2018]](https://arxiv.org/abs/1810.04805). We download the pretrained PyTorch model via HuggingFace's Model Hub (https://huggingface.co/bert-base-multilignual-cased) <br> ## Intended uses & limitations <br> You can use the finetuned models for multiclass/multilabel text classification and token classification task. <br> **Multiclass text classification** - `wisesight_sentiment` 4-class text classification task (`positive`, `neutral`, `negative`, and `question`) based on social media posts and tweets. - `wongnai_reivews` Users' review rating classification task (scale is ranging from 1 to 5) - `generated_reviews_enth` : (`review_star` as label) Generated users' review rating classification task (scale is ranging from 1 to 5). **Multilabel text classification** - `prachathai67k` Thai topic classification with 12 labels based on news article corpus from prachathai.com. The detail is described in this [page](https://huggingface.co/datasets/prachathai67k). **Token classification** - `thainer` Named-entity recognition tagging with 13 named-entities as descibed in this [page](https://huggingface.co/datasets/thainer). - `lst20` : NER NER and POS tagging Named-entity recognition tagging with 10 named-entities and Part-of-Speech tagging with 16 tags as descibed in this [page](https://huggingface.co/datasets/lst20). <br> ## How to use <br> The example notebook demonstrating how to use finetuned model for inference can be found at this [Colab notebook](https://colab.research.google.com/drive/1Kbk6sBspZLwcnOE61adAQo30xxqOQ9ko) <br> **BibTeX entry and citation info** ``` @misc{lowphansirikul2021wangchanberta, title={WangchanBERTa: Pretraining transformer-based Thai Language Models}, author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong}, year={2021}, eprint={2101.09635}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
airesearch/wangchanberta-base-att-spm-uncased
2021-03-26T08:59:22.000Z
[ "pytorch", "camembert", "masked-lm", "arxiv:1907.11692", "arxiv:1801.06146", "arxiv:1808.06226", "arxiv:2101.09635", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "sentencepiece.bpe.vocab", "tokenizer_config.json" ]
airesearch
22,332
transformers
--- widget: - text: "ผู้ใช้งานท่าอากาศยานนานาชาติ<mask>มีกว่าสามล้านคน<pad>" --- # WangchanBERTa base model: `wangchanberta-base-att-spm-uncased` <br> Pretrained RoBERTa BASE model on assorted Thai texts (78.5 GB). The script and documentation can be found at [this reposiryory](https://github.com/vistec-AI/thai2transformers). <br> ## Model description <br> The architecture of the pretrained model is based on RoBERTa [[Liu et al., 2019]](https://arxiv.org/abs/1907.11692). <br> ## Intended uses & limitations <br> You can use the pretrained model for masked language modeling (i.e. predicting a mask token in the input text). In addition, we also provide finetuned models for multiclass/multilabel text classification and token classification task. <br> **Multiclass text classification** - `wisesight_sentiment` 4-class text classification task (`positive`, `neutral`, `negative`, and `question`) based on social media posts and tweets. - `wongnai_reivews` Users' review rating classification task (scale is ranging from 1 to 5) - `generated_reviews_enth` : (`review_star` as label) Generated users' review rating classification task (scale is ranging from 1 to 5). **Multilabel text classification** - `prachathai67k` Thai topic classification with 12 labels based on news article corpus from prachathai.com. The detail is described in this [page](https://huggingface.co/datasets/prachathai67k). **Token classification** - `thainer` Named-entity recognition tagging with 13 named-entities as descibed in this [page](https://huggingface.co/datasets/thainer). - `lst20` : NER NER and POS tagging Named-entity recognition tagging with 10 named-entities and Part-of-Speech tagging with 16 tags as descibed in this [page](https://huggingface.co/datasets/lst20). <br> ## How to use <br> The getting started notebook of WangchanBERTa model can be found at this [Colab notebook](https://colab.research.google.com/drive/1Kbk6sBspZLwcnOE61adAQo30xxqOQ9ko) <br> ## Training data `wangchanberta-base-att-spm-uncased` model was pretrained on assorted Thai text dataset. The total size of uncompressed text is 78.5GB. ### Preprocessing Texts are preprocessed with the following rules: - Replace HTML forms of characters with the actual characters such asnbsp;with a space and \\\\\\\\\\\\\\\\<br /> with a line break [[Howard and Ruder, 2018]](https://arxiv.org/abs/1801.06146). - Remove empty brackets ((), {}, and []) than sometimes come up as a result of text extraction such as from Wikipedia. - Replace line breaks with spaces. - Replace more than one spaces with a single space - Remove more than 3 repetitive characters such as ดีมากกก to ดีมาก [Howard and Ruder, 2018]](https://arxiv.org/abs/1801.06146). - Word-level tokenization using [[Phatthiyaphaibun et al., 2020]](https://zenodo.org/record/4319685#.YA4xEGQzaDU) ’s `newmm` dictionary-based maximal matching tokenizer. - Replace repetitive words; this is done post-tokenization unlike [[Howard and Ruder, 2018]](https://arxiv.org/abs/1801.06146). since there is no delimitation by space in Thai as in English. - Replace spaces with <\\\\\\\\\\\\\\\\_>. The SentencePiece tokenizer combines the spaces with other tokens. Since spaces serve as punctuation in Thai such as sentence boundaries similar to periods in English, combining it with other tokens will omit an important feature for tasks such as word tokenization and sentence breaking. Therefore, we opt to explicitly mark spaces with <\\\\\\\\\\\\\\\\_>. <br> Regarding the vocabulary, we use SentencePiece [[Kudo, 2018]](https://arxiv.org/abs/1808.06226) to train SentencePiece unigram model. The tokenizer has a vocabulary size of 25,000 subwords, trained on 15M sentences sampled from the training set. The length of each sequence is limited up to 416 subword tokens. Regarding the masking procedure, for each sequence, we sampled 15% of the tokens and replace them with<mask>token.Out of the 15%, 80% is replaced with a<mask>token, 10% is left unchanged and 10% is replaced with a random token. <br> **Train/Val/Test splits** After preprocessing and deduplication, we have a training set of 381,034,638 unique,mostly Thai sentences with sequence length of 5 to 300 words (78.5GB). The training set has a total of 16,957,775,412 words as tokenized by dictionary-based maximal matching [[Phatthiyaphaibun et al., 2020]](https://zenodo.org/record/4319685#.YA4xEGQzaDU), 8,680,485,067 subwords astokenized by SentencePiece tokenizer, and 53,035,823,287 characters. <br> **Pretraining** The model was trained on 8 V100 GPUs for 500,000 steps with the batch size of 4,096 (32 sequences per device with 16 accumulation steps) and a sequence length of 416 tokens. The optimizer we used is Adam with the learning rate of $3e-4$, $\\\\\\\\\\\\\\\\beta_1 = 0.9$, $\\\\\\\\\\\\\\\\beta_2= 0.999$ and $\\\\\\\\\\\\\\\\epsilon = 1e-6$. The learning rate is warmed up for the first 24,000 steps and linearly decayed to zero. The model checkpoint with minimum validation loss will be selected as the best model checkpoint. As of Sun 24 Jan 2021, we release the model from the checkpoint @360,000 steps due to the model pretraining has not yet been completed <br> **BibTeX entry and citation info** ``` @misc{lowphansirikul2021wangchanberta, title={WangchanBERTa: Pretraining transformer-based Thai Language Models}, author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong}, year={2021}, eprint={2101.09635}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
airesearch/wangchanberta-base-wiki-newmm
2021-05-20T12:51:04.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "arxiv:1907.11692", "arxiv:2101.09635", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "newmm.json", "pytorch_model.bin" ]
airesearch
511
transformers
# WangchanBERTa base model: `wangchanberta-base-wiki-newmm` <br> Pretrained RoBERTa BASE model on Thai Wikipedia corpus. The script and documentation can be found at [this reposiryory](https://github.com/vistec-AI/thai2transformers). <br> ## Model description <br> The architecture of the pretrained model is based on RoBERTa [[Liu et al., 2019]](https://arxiv.org/abs/1907.11692). <br> ## Intended uses & limitations <br> You can use the pretrained model for masked language modeling (i.e. predicting a mask token in the input text). In addition, we also provide finetuned models for multiclass/multilabel text classification and token classification task. <br> **Multiclass text classification** - `wisesight_sentiment` 4-class text classification task (`positive`, `neutral`, `negative`, and `question`) based on social media posts and tweets. - `wongnai_reivews` Users' review rating classification task (scale is ranging from 1 to 5) - `generated_reviews_enth` : (`review_star` as label) Generated users' review rating classification task (scale is ranging from 1 to 5). **Multilabel text classification** - `prachathai67k` Thai topic classification with 12 labels based on news article corpus from prachathai.com. The detail is described in this [page](https://huggingface.co/datasets/prachathai67k). **Token classification** - `thainer` Named-entity recognition tagging with 13 named-entities as descibed in this [page](https://huggingface.co/datasets/thainer). - `lst20` : NER NER and POS tagging Named-entity recognition tagging with 10 named-entities and Part-of-Speech tagging with 16 tags as descibed in this [page](https://huggingface.co/datasets/lst20). <br> ## How to use <br> The getting started notebook of WangchanBERTa model can be found at this [Colab notebook](https://colab.research.google.com/drive/1Kbk6sBspZLwcnOE61adAQo30xxqOQ9ko) <br> ## Training data `wangchanberta-base-wiki-newmm` model was pretrained on Thai Wikipedia. Specifically, we use the Wikipedia dump articles on 20 August 2020 (dumps.wikimedia.org/thwiki/20200820/). We opt out lists, and tables. ### Preprocessing Texts are preprocessed with the following rules: - Replace non-breaking space, zero-width non-breaking space, and soft hyphen with spaces. - Remove an empty parenthesis that occur right after the title of the first paragraph. - Replace spaces wtth <_>. <br> Regarding the vocabulary, we use wordl-level token from [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)'s dictionary-based tokenizer namedly `newmm`. The total number of word-level tokens in the vocabulary is 97,982. We sample sentences contigously to have the length of at most 512 tokens. For some sentences that overlap the boundary of 512 tokens, we split such sentence with an additional token as document separator. This is the same approach as proposed by [[Liu et al., 2019]](https://arxiv.org/abs/1907.11692) (called "FULL-SENTENCES"). Regarding the masking procedure, for each sequence, we sampled 15% of the tokens and replace them with<mask>token.Out of the 15%, 80% is replaced with a<mask>token, 10% is left unchanged and 10% is replaced with a random token. <br> **Train/Val/Test splits** We split sequencially 944,782 sentences for training set, 24,863 sentences for validation set and 24,862 sentences for test set. <br> **Pretraining** The model was trained on 32 V100 GPUs for 31,250 steps with the batch size of 8,192 (16 sequences per device with 16 accumulation steps) and a sequence length of 512 tokens. The optimizer we used is Adam with the learning rate of $7e-4$, $\beta_1 = 0.9$, $\beta_2= 0.98$ and $\epsilon = 1e-6$. The learning rate is warmed up for the first 1250 steps and linearly decayed to zero. The model checkpoint with minimum validation loss will be selected as the best model checkpoint. <br> **BibTeX entry and citation info** ``` @misc{lowphansirikul2021wangchanberta, title={WangchanBERTa: Pretraining transformer-based Thai Language Models}, author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong}, year={2021}, eprint={2101.09635}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```