File size: 5,872 Bytes
79ac058 62d3cd3 79ac058 494a329 79ac058 494a329 9717ec1 150a400 58aa09a 150a400 58aa09a 150a400 58aa09a 9717ec1 150a400 58aa09a 150a400 58aa09a 150a400 58aa09a 9717ec1 f38562e 77e4f7f f38562e 77e4f7f f38562e 77e4f7f 79ac058 9846f1a eab526e 1beb933 9846f1a 038c8ae 9846f1a 038c8ae 9846f1a 038c8ae 1905a79 85512c5 1905a79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
pretty_name: "ComBack"
language:
- code
pipeline_tag: Compiler Backend
tags:
- C++/C Code
- Compiler Backend
license: "cc-by-4.0"
configs:
- config_name: Statement-Level Completion
data_files :
- split: train
path: Code_Completion/statement_level/train*
- split: validation
path: Code_Completion/statement_level/valid*
- split: test
path: Code_Completion/statement_level/test*
- config_name: Next-Statement Suggestion
data_files :
- split: train
path: Code_Completion/next_statement/train*
- split: validation
path: Code_Completion/next_statement/valid*
- split: test
path: Code_Completion/next_statement/test*
- config_name: Code Generation
data_files :
- split: train
path: Code_Generation/train*
- split: validation
path: Code_Generation/valid*
- split: test
path: Code_Generation/test*
---
# ComBack: A Versatile Dataset for Enhancing Compiler Backend Development Efficiency
ComBack is a large-scale multi-platform compiler backend code dataset. It is sourced from GCC and LLVM backends corresponding to 178 target platforms.
## Dataset Information
- Source Data
- GCC
| Category | Target Platform | Function | KLoC |
| ---- | ---- | ---- | ---- |
| CPU | 30 | 35,147 | 647.2 |
| MPU | 33 | 6,010 | 183.9 |
| GPU | 2 | 457 | 11.2 |
| VLIW | 5 | 959 | 25.4 |
| DSP | 3 | 399 | 9.6 |
| Virtual | 4 | 327 | 6.5 |
| **SUM** | **77** | **43,299** | **883.7** |
- LLVM
| Category | Target Platform | Function | KLoC |
| ---- | ---- | ---- | ---- |
| CPU | 43 | 84,914 | 3,450.4 |
| MPU | 30 | 11,311 | 173.0 |
| GPU | 5 | 22,591 | 768.3 |
| VLIW | 4 | 2,048 | 24.3 |
| DSP | 7 | 9,646 | 263.2 |
| Virtual | 12 | 8,430 | 168.3 |
| **SUM** | **101** | **138,940** | **4,847.5** |
- Tasks
- Statement-Level Completion: complete current statement.
```c++
//Inputs:
...
adjustReg(MBB,LastFrameDestroy, DL, SPReg, FPReg, -StackSize+RVFI->getVarArgsSaveSize()
//Ground Truth:
MachineInstr::FrameDestroy);
```
- Next-Statement Suggestion: predict the next statement.
```c++
//Inputs:
...
maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask;
//Ground Truth:
MFI -> setMaxCallFrameSize(maxCallFrameSize);
```
- Code Generation: generate a function with function description in natrual language.
```c++
//Inputs:
getPointerRegClass: Returns a TargetRegisterClass used for pointer values.
Target-Specific Value: Sparc, SP::I64RegsRegClass, SP::IntRegsRegClass.
//Ground Truth:
TargetRegisterClass *SparcRegisterInfo::getPointerRegClass(MachineFunction &MF ,unsigned Kind) {
return Subtarget.is64Bit() ? &SP::I64RegsRegClass : &SP::IntRegsRegClass;
}
```
## Organization
- `Code_Generation/*` and `Code_Completion/*`: **split data of 178 backends into train/valid/test set in the ratio of 80%:10%:10%**
| Task | Train | Valid | Test |
| ---- | ---- | ---- | ---- |
| Statement-Level Comp. | 128,899(11.36M Token) | 16,112(1.43M Token) | 16,113(1.43M Token) |
| Next-Statement Sugg. | 173,052(15.69M Token) | 21,631(1.99M Token) | 21,632(1.98M Token) |
| Code Generation. | 36,236(5.10M Token) | 4,530(0.64M Token) | 4,530(0.64M Token) |
- `New_Target_Generation/Existing_Types/*` and `New_Target_Completion/Existing_Types/*`: **Take data of RISC-V,ARC,NVPTX both in GCC and LLVM as test set, split train/valid set in the ratio of 85%:15% of other CPU, MPU and GPU targets excluding RI5CY(RI5CY is custmoized based on RISCV)**
| Task | Train | Valid | Test |
| ---- | ---- | ---- | ---- |
| Statement-Level Comp. | 114,016(10.20M Token) | 20,121(1.81M Token) | 6,645(0.58M Token) |
| Next-Statement Sugg. | 152,114(14.10M Token) | 26,844(2.49M Token) | 9,313(0.83M Token) |
| Code Generation. | 30,633(4.44M Token) | 5,406(0.79M Token) | 2,819(0.37M Token) |
- `New_Target_Generation/New_Types/*` and `New_Target_Completion/New_Types/*`: **Take data of ARC,NVPTX both in GCC and LLVM as test set, split train/valid set in the ratio of 85%:15% of other CPU targets excluding RI5CY(RI5CY is custmoized based on RISCV)**
| Task | Train | Valid | Test |
| ---- | ---- | ---- | ---- |
| Statement-Level Comp. | 87,018(7.78M Token) | 15,357(1.37M Token) | 2,764(0.26M Token) |
| Next-Statement Sugg. | 113,684(10.65M Token) | 20,063(1.87M Token) | 4,029(0.38M Token) |
| Code Generation. | 21,184(3.14M Token) | 3,739(0.55M Token) | 1,372(0.18M Token) |
- `Iterative_Expansion_Generation/*` and `Iterative_Expansion_Completion/*`: **Take data of RI5CY in LLVM as test set, split train/valid set in the ratio of 85%:15% of other CPU targets excluding RISC-V(a) and including RISC-V(b)**
##### (a)
| Task | Train | Valid | Test |
| ---- | ---- | ---- | ---- |
| Statement-Level Comp. | 87,018(7.78M Token) | 15,357(1.37M Token) | 721(0.04M Token) |
| Next-Statement Sugg. | 113,684(10.65M Token) | 20,063(1.87M Token) | 1,035(0.06M Token) |
| Code Generation. | 21,184(3.14M Token) | 3,739(0.55M Token) | 219(0.02M Token) |
##### (b)
| Task | Train | Valid | Test |
| ---- | ---- | ---- | ---- |
| Statement-Level Comp. | 90,316(8.06M Token) | 15,940(1.42M Token) | 721(0.04M Token) |
| Next-Statement Sugg. | 118,175(11.04M Token) | 20,856(1.94M Token) | 1,035(0.06M Token) |
| Code Generation. | 22,413(3.30M Token) | 3,957(0.58M Token) | 219(0.02M Token) |
## Citation
```
@inproceedings{zhong2024comback,
title={ComBack: A Versatile Dataset for Enhancing Compiler Backend Development Efficiency},
author={Ming Zhong, Fang Lyu, Lulin Wang, Hongna Geng, Lei Qiu, Huimin Cui, Xiaobing Feng},
booktitle={Thirty-eighth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
year={2024}
}
``` |