File size: 8,774 Bytes
3c8602c
 
 
 
 
 
 
 
 
370ce50
3c8602c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370ce50
 
 
 
 
 
 
 
 
 
 
 
 
3c8602c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#!/usr/bin/env python3
# Simple script to convert StackExchange XML to Open Assistant format
# Original code by https://github.com/b-mc2

from bs4 import BeautifulSoup as bs
import pandas as pd
import os
import glob
import sys
import re
from html2text import html2text
from datasets import load_dataset

CACHE_DIR = "xml/"
SOURCE = "stackexchange-{0}"
MAX_ANSWERS = 10
QUESTION_SCORE_TRESHOLD = 0
ANSWER_SCORE_TRESHOLD = 0
HF_DATASET = "donfu/oa-stackexchange"

xml_format_map = {
    "Id": int,
    "PostTypeId": int,
    "CreationDate": str,
    "Score": int,
    "ViewCount": int,
    "Body": str,
    "AnswerCount": int,
    "CommentCount": int,
    "ContentLicense": str,
    "AcceptedAnswerId": int,
    "ParentId": int,
}


def main():
    datasets = sys.argv[1:] if len(sys.argv) > 1 else list_cached_datasets()
    for dataset in datasets:
        process_dataset(dataset)


def list_cached_datasets():
    xml_files = glob.glob(f"{CACHE_DIR}/*.xml")
    datasets = [os.path.splitext(os.path.basename(file))[0] for file in xml_files]
    datasets.sort()
    return datasets


def process_dataset(dataset):
    xml_file = f"{CACHE_DIR}/{dataset}.xml"
    source = SOURCE.format(dataset)
    if os.path.exists(xml_file):
        df = xml_to_df(xml_file, source)
        # df = filter_only_questions_with_accepted_answers(df)
        # df = filter_scores_above(df, QUESTION_SCORE_TRESHOLD, ANSWER_SCORE_TRESHOLD)
        # df = clean_tags(df)
        # df = convert_html_to_markdown(df)
        # df = group_qa(df)
        oa = convert_to_oa(df)
        save_parquet(oa, dataset)
        # upload_hf(dataset)
    else:
        print(f"XML file {xml_file} not found, please download first. Skipping...")


def convert_to_oa(all):
    """
    Convert dataframe to Open Assistant format with INSTRUCTION, RESPONSE, SOURCE, METADATA columns

    Only include questions with an AcceptedAnswerId
    """
    create_metadata = lambda row: {
        "tags": row["Tags_q"]
        .replace("-", " ")
        .replace("><", ", ")
        .replace("<", "")
        .replace(">", "")
        if isinstance(row["Tags_q"], str)
        else "",
        "score": row["Score_q"],
        "views": row["ViewCount_q"],
    }
    questions = all[all["AcceptedAnswerId"] != 0]
    merged = pd.merge(
        questions,
        all,
        how="left",
        left_on="AcceptedAnswerId",
        right_on="Id",
        suffixes=("_q", "_a"),
    )
    merged["INSTRUCTION"] = (
        merged["Title_q"] + "\n" + merged["Body_q"].apply(to_markdown)
    )
    merged["RESPONSE"] = merged["Body_a"].apply(to_markdown)
    merged["SOURCE"] = merged["DataSource_q"]
    merged["METADATA"] = merged.apply(create_metadata, axis=1)

    return merged[["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"]]


def save_parquet(df, dataset):
    """
    Save Dataframe to Parquet. See here for specs:
    https://projects.laion.ai/Open-Assistant/docs/data/datasets#creating-a-dataset-on-hugging-face
    """
    parquet_file = f"{dataset}.parquet"
    df.to_parquet(parquet_file, row_group_size=100, engine="pyarrow", index=False)
    print("Converted data into parquet format: " + parquet_file)


def upload_hf(dataset):
    """
    Upload to Hugging Face
    """
    parquet_file = f"{dataset}.parquet"
    dataset = load_dataset("parquet", data_files=parquet_file, name=dataset)
    dataset.push_to_hub(HF_DATASET, max_shard_size="500MB")
    print("Uploaded to Hugging Face: " + HF_DATASET)


def xml_to_df(path: str, source: str):
    """
    Collect and Manually import XML into Dataframe

    pd.read_xml() errors when XML trees are too large, this is just a hack to
    download a XML file and parse into a Dataframe. **Not Tested on huge XML files**

    Parameters:
    response (Requests.Response): Requests response object with the XML data

    Returns:
    df (DataFrame): A Dataframe from the XML file
    """
    with open(path, "rb") as f:
        soup = bs(f, "xml")
        posts = soup.find_all("row")

        all_posts = [post.attrs for post in posts]

        df = pd.DataFrame(all_posts)
        df.AnswerCount.fillna(0, inplace=True)
        df.ViewCount.fillna(0, inplace=True)
        df.AcceptedAnswerId.fillna(0, inplace=True)
        df.ParentId.fillna(0, inplace=True)
        df["DataSource"] = source
        df = df.astype(xml_format_map)
        return df


def filter_only_questions_with_accepted_answers(df):
    """
    Filter only to Questions with Accepted Answers

    Filter dataframe by questions that have accepted answers, should also include
    all rows of answers for those questions, even if not accepted.

    Parameters:
    df (DataFrame): containing a "AcceptedAnswerId", "Id", and "ParentId" columns

    Returns:
    df (DataFrame): current dataframe with filtered results
    """
    accepted_ids = df[df["AcceptedAnswerId"] != 0]["Id"].tolist()
    return df[(df["AcceptedAnswerId"] != 0) | (df["ParentId"].isin(accepted_ids))]


def filter_scores_above(
    df, question_score_threshold: int = 20, answer_score_threshold: int = 20
):
    """
    Filter Dataframe by minimum scores

    Filter Question and Answer columns by score thresholds to trim lower scoring results

    Parameters:
    df (DataFrame): containing a "Score" column

    Returns:
    df (DataFrame): current dataframe with filtered results
    """
    return df[
        ((df["Score"] >= question_score_threshold) & (df.PostTypeId == 1))
        | ((df["Score"] >= answer_score_threshold) & (df.PostTypeId == 2))
    ]


remove_markdown_links_pattern = r"\[([^\]]+)\]\(([^\)]+)\)"
remove_remaining_links = r"https?:\/\/[^\s]+"


# Replace HTML content to markdown but remove links
def to_markdown(text):
    text = html2text(text, bodywidth=0).strip()
    text = re.sub(remove_markdown_links_pattern, r"\1", text)
    text = re.sub(remove_remaining_links, "", text)

    if "http" in text:
        raise "Found http in markdown: " + text
    return text


def convert_html_to_markdown(df, column: str = "Body"):
    """
    Convert HTML tags to markdown

    Feeds HTML text body into markdown. Remove final newline from <p> tags

    Parameters:
    df (DataFrame): containing a "Body" column with HTML

    Returns:
    df (DataFrame): current dataframe with parsed column
    """
    df.dropna(subset=[column], inplace=True)
    df[f"{column}Clean"] = df[column].apply(to_markdown)
    return df


def clean_tags(df):
    """
    Convert Tags into Comma separated

    Converts Tag slugs into commas separated tags

    Parameters:
    df (DataFrame): containing a "Tags" column with slugs

    Returns:
    df (DataFrame): current dataframe with parsed column
    """
    df["TagsClean"] = (
        df["Tags"]
        .str.replace("-", " ")
        .str.replace("><", ", ")
        .str.replace("<", "")
        .str.replace(">", "")
    )
    return df


def group_qa(df):
    """
    Group Questions and Answers
    """
    questions = df[df.PostTypeId == 1]
    answers = df[df.PostTypeId == 2]

    df = pd.merge(
        questions,
        answers[
            [
                "Id",
                "CreationDate",
                "Score",
                "ViewCount",
                "CommentCount",
                "ContentLicense",
                "TagsClean",
                "BodyClean",
                "ParentId",
            ]
        ],
        left_on="Id",
        right_on="ParentId",
        suffixes=("_q", "_a"),
        how="left",
    )

    df["AcceptedAnswerFlag"] = df.apply(
        lambda row: row["Id_a"] == row["AcceptedAnswerId"], axis=1
    )

    df = df.rename(
        columns={
            "BodyClean_q": "Question",
            "Score_q": "QuestionScore",
            "TagsClean_q": "QuestionTags",
            "BodyClean_a": "Answer",
            "Score_a": "AnswerScore",
            "ContentLicense_q": "QuestionContentLicense",
            "ContentLicense_a": "AnswerContentLicense",
            "CreationDate_q": "CreationDate",
        }
    )

    df = (
        df.sort_values(
            by=["AcceptedAnswerFlag", "AnswerScore"], ascending=[False, False]
        )
        .groupby("Question")
        .head(MAX_ANSWERS)
        .reset_index(drop=True)
    )
    df = (
        df.groupby(
            [
                "Title",
                "Question",
                "QuestionScore",
                "QuestionTags",
                "QuestionContentLicense",
                "DataSource",
                "CreationDate",
            ]
        )
        .apply(
            lambda x: x[["Answer", "AnswerScore", "AcceptedAnswerFlag"]].to_dict(
                "records"
            )
        )
        .reset_index()
        .rename(columns={0: "Answers"})
    )
    return df


if __name__ == "__main__":
    main()