Last commit not found
#!/usr/bin/env python3 | |
# Simple script to convert StackExchange XML to Open Assistant format | |
# Original code by https://github.com/b-mc2 | |
import os, gc, glob, sys, re | |
from bs4 import BeautifulSoup as bs | |
import pandas as pd | |
from html2text import html2text | |
from datasets import load_dataset | |
from lxml import etree | |
from tqdm import tqdm | |
import subprocess | |
from merge_parquets import merge_parquet_dir | |
XML_DIR = "./xml" | |
SOURCE = "stackexchange-{0}" | |
MAX_ANSWERS = 10 | |
QUESTION_SCORE_TRESHOLD = 0 | |
ANSWER_SCORE_TRESHOLD = 0 | |
HF_DATASET = "donfu/oa-stackexchange" | |
PARQUET_FILE = "{0}.parquet" | |
MAX_LENGTH = 1000 # max length of question or answer | |
def main(): | |
datasets = sys.argv[1:] if len(sys.argv) > 1 else list_cached_datasets() | |
for dataset in datasets: | |
process_dataset(dataset) | |
def list_cached_datasets(): | |
xml_files = glob.glob(f"{XML_DIR}/*.xml") | |
datasets = [os.path.splitext(os.path.basename(file))[0] for file in xml_files] | |
datasets.sort() | |
return datasets | |
def process_dataset(dataset): | |
xml_file = f"{XML_DIR}/{dataset}.xml" | |
parquet_file = PARQUET_FILE.format(dataset) | |
source = SOURCE.format(dataset) | |
if not os.path.exists(xml_file): | |
print(f"XML file {xml_file} not found, please download first. Skipping...") | |
elif not os.path.exists(parquet_file): | |
df = parse_and_convert(xml_file, source) | |
save_parquet(df, dataset) | |
# upload_hf(dataset) | |
else: | |
print(f"File already converted {xml_file}. Skipping...") | |
def parse_and_convert(path: str, source: str): | |
""" | |
Parse (very large) XML files with sax parser and load it into a pandas Dataframe | |
""" | |
total_rows = int(subprocess.getoutput(f"grep -c '<row' {path}")) | |
print(f"Parsing {total_rows} rows from {path}...") | |
columns = "Id PostTypeId Body Title Tags Score AcceptedAnswerId ParentId" | |
rows = [] | |
max_process = 10**6 | |
processed = 0 | |
oa_df = pd.DataFrame(columns=["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"]) | |
context = etree.iterparse(path, events=("end",)) | |
for _, element in tqdm(context, total=total_rows): | |
if element.tag == "row": | |
if len(element.get("Body")) > MAX_LENGTH: | |
continue | |
rows.append(parse_row(element)) | |
processed += 1 | |
element.clear() | |
while element.getprevious() is not None: | |
del element.getparent()[0] | |
if processed % max_process == 0 or processed == total_rows: | |
df = pd.DataFrame(rows, columns=columns.split()) | |
rows = [] | |
oa = convert_to_oa(df, source) | |
oa_df = pd.concat([oa_df, oa]) | |
del df | |
del oa | |
gc.collect() | |
return oa_df | |
def parse_row(element): | |
return [ | |
int(element.get("Id")), | |
int(element.get("PostTypeId")), | |
element.get("Body"), | |
element.get("Title", ""), | |
element.get("Tags", ""), | |
int(element.get("Score", 0)), | |
int(element.get("AcceptedAnswerId", 0)), | |
int(element.get("ParentId", 0)), | |
] | |
def convert_to_oa(all, source): | |
""" | |
Convert dataframe to Open Assistant format with INSTRUCTION, RESPONSE, SOURCE, METADATA columns | |
Only include questions with an AcceptedAnswerId | |
""" | |
questions = all[all["AcceptedAnswerId"] != 0] | |
merged = pd.merge( | |
questions, | |
all, | |
how="inner", | |
left_on="AcceptedAnswerId", | |
right_on="Id", | |
suffixes=("_q", "_a"), | |
) | |
del all | |
merged["INSTRUCTION"] = ( | |
merged["Title_q"] + "\n" + merged["Body_q"].apply(to_markdown) | |
) | |
merged["RESPONSE"] = merged["Body_a"].apply(to_markdown) | |
merged["SOURCE"] = source | |
merged["METADATA"] = merged.apply(create_metadata, axis=1) | |
return merged[["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"]] | |
def convert_tags(raw): | |
return raw.replace("-", " ").replace("><", ", ").replace("<", "").replace(">", "") | |
def create_metadata(row): | |
return { | |
"tags": convert_tags(row["Tags_q"]), | |
"question_score": row["Score_q"], | |
"answer_score": row["Score_a"], | |
} | |
def save_parquet(df, dataset): | |
""" | |
Save Dataframe to Parquet. See here for specs: | |
https://projects.laion.ai/Open-Assistant/docs/data/datasets#creating-a-dataset-on-hugging-face | |
""" | |
parquet_file = PARQUET_FILE.format(dataset) | |
df.to_parquet(parquet_file, row_group_size=100, engine="pyarrow", index=False) | |
print(f"Converted {len(df)} instructions into {parquet_file}") | |
def upload_hf(dataset): | |
""" | |
Upload to Hugging Face | |
""" | |
parquet_file = PARQUET_FILE.format(dataset) | |
dataset = load_dataset("parquet", data_files=parquet_file, name=dataset) | |
dataset.push_to_hub(HF_DATASET, max_shard_size="500MB") | |
print("Uploaded to Hugging Face: " + HF_DATASET) | |
remove_markdown_links_pattern = r"\[([^\]]+)\]\(([^\)]+)\)" | |
remove_remaining_links = r"https?:\/\/[^\s]+" | |
def remove_emojis(string): | |
emoji_pattern = re.compile( | |
"[" | |
"\U0001F600-\U0001F64F" # emoticons | |
"\U0001F300-\U0001F5FF" # symbols & pictographs | |
"\U0001F680-\U0001F6FF" # transport & map symbols | |
"\U0001F1E0-\U0001F1FF" # flags (iOS) | |
"\U00002702-\U000027B0" | |
"\U000024C2-\U0001F251" | |
"]+", | |
flags=re.UNICODE, | |
) | |
return emoji_pattern.sub(r"", string) | |
# Replace HTML content to markdown but remove links | |
def to_markdown(text): | |
try: | |
text = html2text(text, bodywidth=0).strip() | |
except Exception as e: | |
print(e) | |
text = re.sub(r"<[^>]*>", "", str(text)) | |
text = re.sub(remove_markdown_links_pattern, r"\1", text) | |
text = remove_emojis(text) | |
return re.sub(remove_remaining_links, "", text) | |
if __name__ == "__main__": | |
main() | |