Datasets:

Modalities:
Text
Formats:
parquet
DOI:
Libraries:
Datasets
pandas
License:
File size: 5,739 Bytes
0ed25b0
 
 
f422723
0ed25b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import logging
import pandas as pd
from pathlib import Path
from scripts.utils import DataLoader, SCAPlotter, TextProcessor, TopicModeling, DATA_ANALYSIS_PATH

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

logging.info('Initialising the data loader, plotter, text processor and topic modeler')
dl = DataLoader()
plotter = SCAPlotter()
text_processor = TextProcessor(dl)
topic_modeler = TopicModeling()

# plot case distribution
logging.info('Plotting the case distribution on all data')
plotter.plot_case_distribution(dl.load_data('all'))

# get the data with summaries
logging.info('Loading the data with summaries only for further analysis.')
df = dl.load_data('with_summaries')

# prepare the text
logging.info('Preparing the text: dropping duplicates, removing null values, etc.')
df = text_processor.prepare_text(df, target_columns=['input', 'output'])

# get all stats
logging.info('Getting all stats for the text and summary')
stats_file = DATA_ANALYSIS_PATH / 'data_with_stats.csv'
if stats_file.exists():
  stats = pd.read_csv(stats_file)
  df = pd.concat([df, stats], axis=1)

stats = df.copy()
df = text_processor.get_all_stats(df)

if df.equals(stats):
  logging.info('Data and stats are the same. All stats are calculated up to date.')
else:
  stats = df.drop(columns=['text', 'summary'])
  stats.to_csv(stats_file, index=False)
  logging.info(f'Data with stats saved to {stats_file}')
  del stats

logging.info('Plotting the summary vs judgment length')
plotter.plot_summary_vs_judgment_length(df)

logging.info('Plotting the summary and judgment stats')
plotter.plot_length_distribution(df, columns=['text_sent_count', 'text_word_count', 'text_char_count'], file_name='judgment_stats')
plotter.plot_length_distribution(df, columns=['text_sent_density','text_word_density'], file_name='judgment_density_stats')

plotter.plot_length_distribution(df, columns=['sum_sent_count', 'sum_word_count', 'sum_char_count'], file_name='summary_stats')
plotter.plot_length_distribution(df, columns=['sum_sent_density','sum_word_density'], file_name='summary_density_stats')

# get the pos tags
logging.info('Getting the POS tags for the text and summary')
columns = ['ADJ','ADP','ADV','CONJ','DET','NOUN','NUM','PRT','PRON','VERB','.','X']

# plot the pos tags
logging.info('Plotting the POS tags for the text and summary')
postags = ['ADJ','ADP','ADV','CONJ','DET','NOUN']

df_text = df[[f'text_{p}' for p in postags]]
df_text.columns = [p for p in postags]
plotter.plot_length_distribution(df_text, columns=postags, plot_boxplots=False, file_name='judgment_pos_tags')

df_summary = df[[f'sum_{p}' for p in postags]]
df_summary.columns = [p for p in postags]
plotter.plot_length_distribution(df_summary, columns=postags, plot_boxplots=False, file_name='summary_pos_tags')

del df_text, df_summary

# print some unknown words
logging.info('Printing some unknown words')
print('Unknown words: ', df['text_unknown_words'].values[5])

# plot unknown words stats in text and summary
logging.info('Plotting the unknown words stats')
unknown_words_columns = ['text_unknown_count', 'sum_unknown_count']
plotter.plot_length_distribution(df, columns=unknown_words_columns, file_name='unknown_words_stats')

# plot puncs and stopwords
logging.info('Plotting the punctuation and stopwords stats')
target_columns = ['text_stopw_count', 'sum_stopw_count', 'text_punc_count','sum_punc_count']
plotter.plot_length_distribution(df, columns=target_columns, file_name='punc_stopw_and_punc_stats')

# clean the data for topic modeling
logging.info('Cleaning the text and summary for topic modeling')
cleaned_text, cleaned_summary = text_processor.remove_stopwords(df, target_columns=['text', 'summary'])

plotter.plot_wordcloud(cleaned_text, file_name='judgment_wordcloud')
plotter.plot_wordcloud(cleaned_summary, file_name='summary_wordcloud')

# Visualise the 20 most common words in the judgment
logging.info('Visualising the 20 most common words in the judgment')
tf, tf_feature_names = text_processor.get_vectorizer_features(cleaned_text)
plotter.plot_most_common_words(tf, tf_feature_names, file_name='judgment_most_common_words')

# # perform lda analysis, this takes a lot of time
# logging.info('Performing LDA analysis on the judgment')
# topic_modeler.perform_lda_analysis(cleaned_text, tf_vectorizer, file_name='judgment_lda_analysis')

# Visualise the 20 most common words in the summary
logging.info('Visualising the 20 most common words in the summary')
tf, tf_feature_names = text_processor.get_vectorizer_features(cleaned_summary)
plotter.plot_most_common_words(tf, tf_feature_names, file_name='summary_most_common_words')

# # perform lda analysis, this takes a lot of time
# logging.info('Performing LDA analysis on the summary')
# topic_modeler.perform_lda_analysis(cleaned_summary, tf_vectorizer, file_name='summary_lda_analysis')

# perform bertopic analysis
logging.info('Performing BERTopic analysis on the judgment and summary')
topic_modeler.perform_bertopic_analysis(cleaned_text=cleaned_text, cleaned_summary=cleaned_summary, output_path='bertopic/')
judgment_model, _ = topic_modeler.perform_bertopic_analysis(cleaned_text=cleaned_text, save_topic_info=False, output_path='bertopic/judgments/')
summary_model, _ = topic_modeler.perform_bertopic_analysis(cleaned_summary=cleaned_summary, save_topic_info=False, output_path='bertopic/summaries/')

# calculate topic overlap
logging.info('Calculating the topic overlap between the judgment and summary')
overlap_matrix = topic_modeler.calculate_overlap_matrix(judgment_model, summary_model)

# plot the overlap matrix
logging.info('Plotting the overlap matrix')
plotter.plot_overlap_heatmap(overlap_matrix, file_name='overlap_matrix')