File size: 16,409 Bytes
8d5ae49 db22c47 8d5ae49 db22c47 607dd77 db22c47 8d5ae49 db22c47 8d5ae49 607dd77 8d5ae49 db22c47 8d5ae49 db22c47 8d5ae49 607dd77 8d5ae49 607dd77 8d5ae49 607dd77 8d5ae49 db22c47 8d5ae49 db22c47 8d5ae49 db22c47 8d5ae49 607dd77 8d5ae49 527a9bc 607dd77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
#!/usr/bin/env python3
# Copyright 2025 Yingwei Zheng
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import json
import re
sys.path.append(os.path.join(os.path.dirname(os.environ["LAB_DATASET_DIR"]), "scripts"))
import llvm_helper
from lab_env import Environment as Env
from openai import OpenAI
from openai import NOT_GIVEN
token = os.environ["LAB_LLM_TOKEN"]
url = os.environ.get("LAB_LLM_URL", "https://api.deepseek.com")
model = os.environ.get("LAB_LLM_MODEL", "deepseek-reasoner")
basemodel_cutoff = os.environ.get("LAB_LLM_BASEMODEL_CUTOFF", "2023-12-31Z")
client = OpenAI(api_key=token, base_url=url)
temperature = 0.0
max_input_tokens = int(os.environ.get("LAB_LLM_CONTEXT_WINDOW_SIZE", 65536))
# Seems not working, sad :(
enable_tooling = os.environ.get("LAB_LLM_ENABLE_TOOLING", "OFF") == "ON"
enable_streaming = os.environ.get("LAB_LLM_ENABLE_STREAMING", "OFF") == "ON"
max_log_size = int(os.environ.get("LAB_LLM_MAX_LOG_SIZE", 1000000000))
fix_dir = os.environ["LAB_FIX_DIR"]
os.makedirs(fix_dir, exist_ok=True)
tools = []
tool_get_source_prompt = "If you need to view the source code, please call the `get_source` function. It is very helpful to address compilation errors by inspecting the latest LLVM API."
tool_get_source_desc = {
"type": "function",
"function": {
"name": "get_source",
"description": "Get the first 10 lines of the source code starting from the specified line number.",
"parameters": {
"type": "object",
"properties": {
"file": {
"type": "string",
"description": "Relative path to the source file. Must start with 'llvm/'",
},
"lineno": {
"type": "number",
"description": "The line number to start from. The first line is 1.",
},
},
"required": ["file", "lineno"],
},
},
}
def tool_get_source(env, args):
file = args["file"]
if not file.startswith("llvm/") or file.contains(".."):
return "Invalid file path"
lineno = int(args["lineno"])
path = os.path.join(llvm_helper.llvm_dir, file)
env.reset()
env.use_knowledge(f"source file: {file}:{lineno}", env.knowledge_cutoff)
with open(path) as f:
source = f.readlines()
return "```cpp\n" + "".join(source[lineno - 1 : lineno + 9]) + "```\n"
tools.append((tool_get_source_prompt, tool_get_source_desc, tool_get_source))
tool_get_instruction_docs_prompt = "If you need the definition of an LLVM instruction or an intrinsic, please call the `get_instruction_docs` function. It is useful to understand new poison-generating flags."
tool_get_instruction_docs_desc = {
"type": "function",
"function": {
"name": "get_instruction_docs",
"description": "Get the documentation of an LLVM instruction or an intrinsic.",
"parameters": {
"type": "object",
"properties": {
"inst": {
"type": "string",
"description": "The name of the instruction or intrinsic (e.g., 'add', 'llvm.ctpop'). Do not include the suffix for type mangling.",
}
},
"required": ["inst"],
},
},
}
def tool_get_instruction_docs(env, args):
inst = args["inst"]
return env.get_langref_desc([inst])[inst]
tools.append(
(
tool_get_instruction_docs_prompt,
tool_get_instruction_docs_desc,
tool_get_instruction_docs,
)
)
tool_check_refinement_prompt = "If you want to check if an optimization is correct, please call the `check_refinement` function. If the optimization is incorrect, the function will provide a counterexample."
tool_check_refinement_desc = {
"type": "function",
"function": {
"name": "check_refinement",
"description": "Check if an optimization is correct. If the optimization is incorrect, the function will provide a counterexample.",
"parameters": {
"type": "object",
"properties": {
"src": {
"type": "string",
"description": "The original LLVM function.",
},
"tgt": {
"type": "string",
"description": "The optimized LLVM function. The name of target function should be the same as the original function.",
},
},
"required": ["src", "tgt"],
},
},
}
def tool_check_refinement(env, args):
src = args["src"]
tgt = args["tgt"]
env.use_knowledge(f"alive2", env.knowledge_cutoff)
if "ptr" in src and "target datalayout" not in src:
src = f'target datalayout = "p:8:8:8"\n{src}'
if "ptr" in tgt and "target datalayout" not in tgt:
tgt = f'target datalayout = "p:8:8:8"\n{tgt}'
res, log = llvm_helper.alive2_check(src, tgt, "-src-unroll=8 -tgt-unroll=8")
if res:
return "The optimization is correct."
return log
tools.append(
(tool_check_refinement_prompt, tool_check_refinement_desc, tool_check_refinement)
)
def get_tooling_prompt():
if not enable_tooling:
return ""
prompt = "You are allowed to use the following functions when fixing this bug:\n"
for x in tools:
prompt += x[0] + "\n"
return prompt
def get_available_tools():
if not enable_tooling:
return NOT_GIVEN
return [x[1] for x in tools]
def dispatch_tool_call(env, name, args):
assert enable_tooling
try:
args = json.loads(args)
for tool in tools:
if tool[1]["function"]["name"] == name:
return tool[2](env, args)
except Exception as e:
return str(e)
def estimate_input_tokens(messages):
return sum(len(chat["content"]) for chat in messages) * 0.3
def append_message(messages, full_messages, message, dump=True):
role = message["role"]
content = message["content"]
if dump:
print(f"{role}: {content}")
messages.append({"role": role, "content": content})
full_messages.append(message)
def chat_with_tooling(env, messages, full_messages):
reasoning_content = ""
content = ""
try:
while True:
response = (
client.chat.completions.create(
model=model,
messages=messages,
timeout=300,
temperature=temperature,
tools=get_available_tools(),
)
.choices[0]
.message
)
if response.tool_calls is None or len(response.tool_calls) == 0:
break
if hasattr(response, "reasoning_content"):
reasoning_content += response.reasoning_content
print("Thinking:")
print(response.reasoning_content)
messages.append(response)
for tool_call in response.tool_calls:
name = tool_call.function.name
args = tool_call.function.arguments
res = dispatch_tool_call(env, name, args)
print(f"Call tool {name} with")
print(args)
print("Result: ", res)
full_messages.append(
{
"role": "assistant - funccall",
"tool_name": name,
"tool_args": args,
"tool_res": res,
}
)
messages.append(
{
"role": "tool",
"tool_call_id": tool_call.id,
"content": str(res),
}
)
print("assistant:")
if hasattr(response, "reasoning_content"):
reasoning_content += response.reasoning_content
print("Thinking:")
print(response.reasoning_content)
content = response.content
print("Answer:")
print(content)
except Exception as e:
print(e)
append_message(
messages,
full_messages,
{"role": "assistant", "content": f"Exception: {e}"},
dump=False,
)
return ""
answer = {"role": "assistant", "content": content}
if len(reasoning_content) > 0:
answer["reasoning_content"] = reasoning_content
append_message(messages, full_messages, answer, dump=False)
return content
def chat_with_streaming(env, messages, full_messages):
reasoning_content = ""
content = ""
try:
completion = client.chat.completions.create(
model=model,
messages=messages,
timeout=300,
temperature=temperature,
stream=True,
)
is_thinking = False
is_answering = False
for chunk in completion:
delta = chunk.choices[0].delta
if hasattr(delta, "reasoning_content") and delta.reasoning_content != None:
if not is_thinking:
print("Thinking:")
is_thinking = True
print(delta.reasoning_content, end="", flush=True)
reasoning_content += delta.reasoning_content
else:
if delta.content != "" and is_answering is False:
print("\nAnswer:")
is_answering = True
print(delta.content, end="", flush=True)
content += delta.content
except Exception as e:
print(e)
append_message(
messages,
full_messages,
{"role": "assistant", "content": f"Exception: {e}"},
dump=False,
)
return ""
answer = {"role": "assistant", "content": content}
if len(reasoning_content) > 0:
answer["reasoning_content"] = reasoning_content
append_message(messages, full_messages, answer, dump=False)
return content
def chat(env, messages, full_messages):
if enable_streaming:
assert not enable_tooling
return chat_with_streaming(env, messages, full_messages)
return chat_with_tooling(env, messages, full_messages)
format_requirement = """
Please answer with the code directly. Do not include any additional information in the output.
Please answer with the complete code snippet (including the unmodified part) that replaces the original code. Do not answer with a diff.
"""
def get_system_prompt() -> str:
return (
"""You are an LLVM maintainer.
You are fixing a middle-end bug in the LLVM project."""
+ format_requirement
+ get_tooling_prompt()
)
def get_hunk(env: Env) -> str:
lineno = env.get_hint_line_level_bug_locations()
bug_file = next(iter(lineno.keys()))
bug_hunks = next(iter(lineno.values()))
min_lineno = 1e9
max_lineno = 0
for range in bug_hunks:
min_lineno = min(min_lineno, range[0])
max_lineno = max(max_lineno, range[1])
margin = 30
base_commit = env.get_base_commit()
source_code = str(
llvm_helper.git_execute(["show", f"{base_commit}:{bug_file}"])
).splitlines()
min_lineno = max(min_lineno - margin, 1)
max_lineno = min(max_lineno + margin, len(source_code))
hunk = "\n".join(source_code[min_lineno - 1 : max_lineno])
return bug_file, hunk
def extract_code_from_reply(tgt: str):
if tgt.startswith("```"):
tgt = tgt.strip().removeprefix("```cpp").removeprefix("```").removesuffix("```")
return tgt
# Match the last code block
re1 = re.compile("```cpp([\s\S]+)```")
matches = re.findall(re1, tgt)
if len(matches) > 0:
return matches[-1]
re2 = re.compile("```([\s\S]+)```")
matches = re.findall(re2, tgt)
if len(matches) > 0:
return matches[-1]
return tgt
def modify_inplace(file, src, tgt):
tgt = extract_code_from_reply(tgt)
path = os.path.join(llvm_helper.llvm_dir, file)
with open(path) as f:
code = f.read()
code = code.replace(src, tgt)
with open(path, "w") as f:
f.write(code)
def get_issue_desc(env: Env) -> str:
issue = env.get_hint_issue()
if issue is None:
return ""
title = issue["title"]
body = issue["body"]
return f"Issue title: {title}\nIssue body: {body}\n"
def normalize_feedback(log) -> str:
if not isinstance(log, list):
if len(log) > max_log_size:
return log[:max_log_size] + "\n<Truncated>..."
return str(log)
return json.dumps(llvm_helper.get_first_failed_test(log), indent=2)
def issue_fixing_iter(
env: Env, file, src, messages, full_messages, context_requirement
):
env.reset()
tgt = chat(env, messages, full_messages)
modify_inplace(file, src, tgt)
res, log = env.check_full()
if res:
return True
append_message(
messages,
full_messages,
{
"role": "user",
"content": "Feedback:\n"
+ normalize_feedback(log)
+ "\nPlease adjust code according to the feedback."
+ format_requirement
+ context_requirement,
},
)
return False
def normalize_messages(messages):
return {"model": model, "messages": messages}
override = False
def fix_issue(issue_id):
fix_log_path = os.path.join(fix_dir, f"{issue_id}.json")
if not override and os.path.exists(fix_log_path):
print(f"Skip {issue_id}")
return
print(f"Fixing {issue_id}")
env = Env(issue_id, basemodel_cutoff)
bug_funcs = env.get_hint_bug_functions()
if len(bug_funcs) != 1 or len(next(iter(bug_funcs.values()))) != 1:
print("Multi-func bug is not supported")
return
messages = []
full_messages = [] # Log with COT tokens
append_message(
messages, full_messages, {"role": "system", "content": get_system_prompt()}
)
bug_type = env.get_bug_type()
bug_func_name = next(iter(bug_funcs.values()))[0]
component = next(iter(env.get_hint_components()))
desc = f"This is a {bug_type} bug in {component}.\n"
desc += get_issue_desc(env)
env.reset()
res, log = env.check_fast()
assert not res
desc += "Detailed information:\n"
desc += normalize_feedback(log) + "\n"
file, hunk = get_hunk(env)
desc += f"Please modify the following code in {file}:{bug_func_name} to fix the bug:\n```cpp\n{hunk}\n```\n"
prefix = "\n".join(hunk.splitlines()[:5])
suffix = "\n".join(hunk.splitlines()[-5:])
context_requirement = f"Please make sure the answer includes the prefix:\n```cpp\n{prefix}\n```\nand the suffix:\n```cpp\n{suffix}\n```\n"
desc += format_requirement + context_requirement
append_message(messages, full_messages, {"role": "user", "content": desc})
for idx in range(4):
print(f"Round {idx + 1}")
if estimate_input_tokens(messages) > max_input_tokens:
return
if issue_fixing_iter(
env, file, hunk, messages, full_messages, context_requirement
):
cert = env.dump(normalize_messages(full_messages))
print(cert)
with open(fix_log_path, "w") as f:
f.write(json.dumps(cert, indent=2))
return
cert = env.dump(normalize_messages(full_messages))
with open(fix_log_path, "w") as f:
f.write(json.dumps(cert, indent=2))
if len(sys.argv) == 1:
task_list = sorted(
map(lambda x: x.removesuffix(".json"), os.listdir(llvm_helper.dataset_dir))
)
else:
task_list = [sys.argv[1]]
if len(sys.argv) == 3 and sys.argv[2] == "-f":
override = True
for task in task_list:
try:
fix_issue(task)
except Exception as e:
print(e)
exit(-1)
|