--- dataset_info: features: - name: image dtype: image - name: width dtype: int64 - name: height dtype: int64 - name: category dtype: string - name: label dtype: int64 - name: bboxes sequence: sequence: int64 splits: - name: train num_bytes: 124686342 num_examples: 1200 - name: test num_bytes: 47139142 num_examples: 439 download_size: 166410237 dataset_size: 171825484 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* license: other task_categories: - image-classification - object-detection size_categories: - 1K _The dataset consists of modern documents and archival ones with various formats, including document images and born-digital formats such as PDF. The annotated contents contain the table entities and cell entities in a document, while we do not deal with nested tables._ **This "resized" version contains all the images from "Track A" (table detection) resized so that the largest dimension (either width or height) is 1000px. The annotations were converted from XML to JSON and boxes are represented in Pascal VOC format `(xmin, ymin, xmax, ymax)`.** ## Dataset Structure ### Data Instances A sample from the training set is provided below : ``` { 'image': , 'width': 1000, 'height': 729, 'category': 'historical', 'label': 0, 'bboxes': [[...]] } ``` ### Data Fields - `image`: A `PIL.Image.Image` object containing a document. - `width`: image's width. - `height`: image's height. - `category`: class label. - `label`: an `int` classification label. - `bboxes`: list of box coordinates in `(xmin, ymin, xmax, ymax)` format (Pascal VOC).
Class Label Mappings ```json { "0": "historical", "1": "modern" } ```
### Data Splits | |train|test| |----------|----:|----:| |# of examples|1200|439| ## Additional Information ### Licensing Information This dataset is a resized and reorganized version of ICDAR2019 cTDaR from the [ICDAR 2019 Competition on Table Detection and Recognition](https://cndplab-founder.github.io/cTDaR2019/index.html).