dvgodoy commited on
Commit
e4c961c
·
verified ·
1 Parent(s): 40b8920

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -3
README.md CHANGED
@@ -20,13 +20,13 @@ dataset_info:
20
  sequence: int64
21
  splits:
22
  - name: train
23
- num_bytes: 134578038.0
24
  num_examples: 1200
25
  - name: test
26
- num_bytes: 44974087.0
27
  num_examples: 390
28
  download_size: 162624154
29
- dataset_size: 179552125.0
30
  configs:
31
  - config_name: default
32
  data_files:
@@ -34,4 +34,109 @@ configs:
34
  path: data/train-*
35
  - split: test
36
  path: data/test-*
 
 
 
 
 
 
37
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  sequence: int64
21
  splits:
22
  - name: train
23
+ num_bytes: 134578038
24
  num_examples: 1200
25
  - name: test
26
+ num_bytes: 44974087
27
  num_examples: 390
28
  download_size: 162624154
29
+ dataset_size: 179552125
30
  configs:
31
  - config_name: default
32
  data_files:
 
34
  path: data/train-*
35
  - split: test
36
  path: data/test-*
37
+ license: other
38
+ task_categories:
39
+ - image-classification
40
+ - object-detection
41
+ size_categories:
42
+ - 1K<n<10K
43
  ---
44
+ # Dataset Card for ICDAR2019-cTDaR-TRACKA
45
+
46
+ **This dataset is a resized version of the original [cndplab-founder/ICDAR2019_cTDaR](https://github.com/cndplab-founder/ICDAR2019_cTDaR), combined with with its supplement [cndplab-founder/ICDAR2019_cTDaR_dataset_supplement](https://github.com/cndplab-founder/ICDAR2019_cTDaR_dataset_supplement).**
47
+
48
+ You can easily and quickly load it:
49
+
50
+ ```python
51
+ dataset = load_dataset("dvgodoy/ICDAR2019_cTDaR_TRACKB_resized")
52
+ ```
53
+
54
+ ```
55
+ DatasetDict({
56
+ train: Dataset({
57
+ features: ['image', 'width', 'height', 'category', 'label', 'bboxes_table', 'bboxes_cell'],
58
+ num_rows: 1200
59
+ })
60
+ test: Dataset({
61
+ features: ['image', 'width', 'height', 'category', 'label', 'bboxes_table', 'bboxes_cell'],
62
+ num_rows: 390
63
+ })
64
+ })
65
+ ```
66
+
67
+ ## Table of Contents
68
+ - [Dataset Description](#dataset-description)
69
+ - [Dataset Summary](#dataset-summary)
70
+ - [Dataset Structure](#dataset-structure)
71
+ - [Data Instances](#data-instances)
72
+ - [Data Fields](#data-instances)
73
+ - [Data Splits](#data-instances)
74
+ - [Additional Information](#additional-information)
75
+ - [Licensing Information](#licensing-information)
76
+
77
+ ## Dataset Description
78
+
79
+ - **Homepage:** [ICDAR 2019 cTDaR Dataset](https://cndplab-founder.github.io/cTDaR2019/dataset-description.html)
80
+ - **Repository:** [GitHUb](https://github.com/cndplab-founder/ICDAR2019_cTDaR)
81
+ - **Paper:**
82
+ - **Leaderboard:** [Competition Results](https://cndplab-founder.github.io/cTDaR2019/results.html)
83
+ - **Point of Contact:** [[email protected]](mailto:[email protected])
84
+
85
+ ### Dataset Summary
86
+
87
+ From the original ICDAR2019 cTDaR [dataset](https://cndplab-founder.github.io/cTDaR2019/dataset-description.html) page:
88
+
89
+ > _The dataset consists of modern documents and archival ones with various formats, including document images and born-digital formats such as PDF. The annotated contents contain the table entities and cell entities in a document, while we do not deal with nested tables._
90
+
91
+ **This "resized" version contains all the images from "Track B," resized so that the largest dimension (either width or height) is 1000px. The annotations were converted from XML to JSON and boxes are represented in Pascal VOC format `(xmin, ymin, xmax, ymax)`. The original dataset did not contain "modern" tables or annotations, so the [supplement dataset](https://github.com/cndplab-founder/ICDAR2019_cTDaR_dataset_supplement) was merged into it, and its annotations converted accordingly.**
92
+
93
+ ## Dataset Structure
94
+
95
+ ### Data Instances
96
+
97
+ A sample from the training set is provided below :
98
+ ```
99
+ {
100
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=1000x729>,
101
+ 'width': 1000,
102
+ 'height': 729,
103
+ 'category': 'historical',
104
+ 'label': 0,
105
+ 'bboxes_table': [[...]],
106
+ 'bboxes_cell': [[...]]
107
+ }
108
+ ```
109
+
110
+ ### Data Fields
111
+
112
+ - `image`: A `PIL.Image.Image` object containing a document.
113
+ - `width`: image's width.
114
+ - `height`: image's height.
115
+ - `category`: class label.
116
+ - `label`: an `int` classification label.
117
+ - `bboxes_table`: list of box coordinates in `(xmin, ymin, xmax, ymax)` format (Pascal VOC).
118
+ - `bboxes_cell`: list of lists of box coordinates in `(xmin, ymin, xmax, ymax)` format (Pascal VOC) - the outer list matches the length of the `bboxes_table` list, and each of its elements is a list of cells.
119
+
120
+ <details>
121
+ <summary>Class Label Mappings</summary>
122
+
123
+ ```json
124
+ {
125
+ "0": "historical",
126
+ "1": "modern"
127
+ }
128
+ ```
129
+
130
+ </details>
131
+
132
+ ### Data Splits
133
+
134
+ | |train|test|
135
+ |----------|----:|----:|
136
+ |# of examples|1200|390|
137
+
138
+ ## Additional Information
139
+
140
+ ### Licensing Information
141
+
142
+ This dataset is a resized and reorganized version of ICDAR2019 cTDaR from the [ICDAR 2019 Competition on Table Detection and Recognition](https://cndplab-founder.github.io/cTDaR2019/index.html), merged with its [supplement](https://github.com/cndplab-founder/ICDAR2019_cTDaR_dataset_supplement), which is licensed under [BSD 2-Clause License](https://github.com/cndplab-founder/ICDAR2019_cTDaR_dataset_supplement?tab=BSD-2-Clause-1-ov-file#readme).