File size: 4,835 Bytes
58c54d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import imageio
import skimage
import cv2
import torch
from torch.nn import functional as F


def get_psnr(img1, img2, normalize_rgb=False):
    if normalize_rgb: # [-1,1] --> [0,1]
        img1 = (img1 + 1.) / 2.
        img2 = (img2 + 1. ) / 2.

    mse = torch.mean((img1 - img2) ** 2)
    psnr = -10. * torch.log(mse) / torch.log(torch.Tensor([10.]).cuda())

    return psnr


def load_rgb(path, normalize_rgb = False):
    img = imageio.imread(path)
    img = skimage.img_as_float32(img)

    if normalize_rgb: # [-1,1] --> [0,1]
        img -= 0.5
        img *= 2.
    img = img.transpose(2, 0, 1)
    return img


def load_K_Rt_from_P(filename, P=None):
    if P is None:
        lines = open(filename).read().splitlines()
        if len(lines) == 4:
            lines = lines[1:]
        lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
        P = np.asarray(lines).astype(np.float32).squeeze()

    out = cv2.decomposeProjectionMatrix(P)
    K = out[0]
    R = out[1]
    t = out[2]

    K = K/K[2,2]
    intrinsics = np.eye(4)
    intrinsics[:3, :3] = K

    pose = np.eye(4, dtype=np.float32)
    pose[:3, :3] = R.transpose()
    pose[:3,3] = (t[:3] / t[3])[:,0]

    return intrinsics, pose


def get_camera_params(uv, pose, intrinsics):
    if pose.shape[1] == 7: #In case of quaternion vector representation
        cam_loc = pose[:, 4:]
        R = quat_to_rot(pose[:,:4])
        p = torch.eye(4).repeat(pose.shape[0],1,1).cuda().float()
        p[:, :3, :3] = R
        p[:, :3, 3] = cam_loc
    else: # In case of pose matrix representation
        cam_loc = pose[:, :3, 3]
        p = pose

    batch_size, num_samples, _ = uv.shape

    depth = torch.ones((batch_size, num_samples)).cuda()
    x_cam = uv[:, :, 0].view(batch_size, -1)
    y_cam = uv[:, :, 1].view(batch_size, -1)
    z_cam = depth.view(batch_size, -1)

    pixel_points_cam = lift(x_cam, y_cam, z_cam, intrinsics=intrinsics)

    # permute for batch matrix product
    pixel_points_cam = pixel_points_cam.permute(0, 2, 1)

    world_coords = torch.bmm(p, pixel_points_cam).permute(0, 2, 1)[:, :, :3]
    ray_dirs = world_coords - cam_loc[:, None, :]
    ray_dirs = F.normalize(ray_dirs, dim=2)

    return ray_dirs, cam_loc


def get_camera_for_plot(pose):
    if pose.shape[1] == 7: #In case of quaternion vector representation
        cam_loc = pose[:, 4:].detach()
        R = quat_to_rot(pose[:,:4].detach())
    else: # In case of pose matrix representation
        cam_loc = pose[:, :3, 3]
        R = pose[:, :3, :3]
    cam_dir = R[:, :3, 2]
    return cam_loc, cam_dir


def lift(x, y, z, intrinsics):
    # parse intrinsics
    intrinsics = intrinsics.cuda()
    fx = intrinsics[:, 0, 0]
    fy = intrinsics[:, 1, 1]
    cx = intrinsics[:, 0, 2]
    cy = intrinsics[:, 1, 2]
    sk = intrinsics[:, 0, 1]

    x_lift = (x - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z
    y_lift = (y - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z

    # homogeneous
    return torch.stack((x_lift, y_lift, z, torch.ones_like(z).cuda()), dim=-1)


def quat_to_rot(q):
    batch_size, _ = q.shape
    q = F.normalize(q, dim=1)
    R = torch.ones((batch_size, 3,3)).cuda()
    qr=q[:,0]
    qi = q[:, 1]
    qj = q[:, 2]
    qk = q[:, 3]
    R[:, 0, 0]=1-2 * (qj**2 + qk**2)
    R[:, 0, 1] = 2 * (qj *qi -qk*qr)
    R[:, 0, 2] = 2 * (qi * qk + qr * qj)
    R[:, 1, 0] = 2 * (qj * qi + qk * qr)
    R[:, 1, 1] = 1-2 * (qi**2 + qk**2)
    R[:, 1, 2] = 2*(qj*qk - qi*qr)
    R[:, 2, 0] = 2 * (qk * qi-qj * qr)
    R[:, 2, 1] = 2 * (qj*qk + qi*qr)
    R[:, 2, 2] = 1-2 * (qi**2 + qj**2)
    return R


def rot_to_quat(R):
    batch_size, _,_ = R.shape
    q = torch.ones((batch_size, 4)).cuda()

    R00 = R[:, 0,0]
    R01 = R[:, 0, 1]
    R02 = R[:, 0, 2]
    R10 = R[:, 1, 0]
    R11 = R[:, 1, 1]
    R12 = R[:, 1, 2]
    R20 = R[:, 2, 0]
    R21 = R[:, 2, 1]
    R22 = R[:, 2, 2]

    q[:,0]=torch.sqrt(1.0+R00+R11+R22)/2
    q[:, 1]=(R21-R12)/(4*q[:,0])
    q[:, 2] = (R02 - R20) / (4 * q[:, 0])
    q[:, 3] = (R10 - R01) / (4 * q[:, 0])
    return q


def get_sphere_intersections(cam_loc, ray_directions, r = 1.0):
    # Input: n_rays x 3 ; n_rays x 3
    # Output: n_rays x 1, n_rays x 1 (close and far)

    ray_cam_dot = torch.bmm(ray_directions.view(-1, 1, 3),
                            cam_loc.view(-1, 3, 1)).squeeze(-1)
    under_sqrt = ray_cam_dot ** 2 - (cam_loc.norm(2, 1, keepdim=True) ** 2 - r ** 2)

    # sanity check
    if (under_sqrt <= 0).sum() > 0:
        print('BOUNDING SPHERE PROBLEM!')
        exit()

    sphere_intersections = torch.sqrt(under_sqrt) * torch.Tensor([-1, 1]).cuda().float() - ray_cam_dot
    sphere_intersections = sphere_intersections.clamp_min(0.0)

    return sphere_intersections