extends AIController3D class_name CarAIController func get_obs() -> Dictionary: # Positions and velocities are converted to the player's frame of reference var player_velocity = _player.get_normalized_velocity_in_player_reference() var observations : Array = [ n_steps / float(reset_after), player_velocity.x, player_velocity.z, _player.angular_velocity.y * 1.5, _player.steering / deg_to_rad(_player.max_steer_angle) ] # After the first reset, the goal parking position will be assigned, # so we provide zero values for those positions before then # (used for detecting the size of the observation space) if _player.times_restarted == 0: observations.append_array([0.0, 0.0, 0.0, 0.0]) else: var goal_transform: Transform3D = _player.goal_parking_spot var goal_position = ( _player.to_local(goal_transform.origin) / Vector2( _player.playing_area_x_size, _player.playing_area_z_size ).length() ) observations.append_array( [ goal_position.x, goal_position.z, (goal_transform.basis.z - _player.global_transform.basis.z).x, (goal_transform.basis.z - _player.global_transform.basis.z).z, ] ) observations.append_array(_player.raycast_sensor.get_observation()) return {"obs": observations} func get_reward() -> float: return reward func get_action_space() -> Dictionary: return { "acceleration" : { "size": 1, "action_type": "continuous" }, "steering" : { "size": 1, "action_type": "continuous" }, } func _physics_process(delta): n_steps += 1 if n_steps > reset_after: needs_reset = true done = true func set_action(action) -> void: _player.requested_acceleration = clampf(action.acceleration[0], -1.0, 1.0) _player.requested_steering = clampf(action.steering[0], -1.0, 1.0)