New balanced dataset
Browse files- VQG.py +114 -0
- images.tar.gz +3 -0
- metadata_test.csv +0 -0
- metadata_train.csv +0 -0
- metadata_validation.csv +0 -0
VQG.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""SQUAD: The Stanford Question Answering Dataset."""
|
18 |
+
|
19 |
+
|
20 |
+
import json
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
24 |
+
import pandas as pd
|
25 |
+
|
26 |
+
|
27 |
+
logger = datasets.logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
_CITATION = """\
|
31 |
+
@article{2016arXiv160605250R,
|
32 |
+
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
|
33 |
+
Konstantin and {Liang}, Percy},
|
34 |
+
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
|
35 |
+
journal = {arXiv e-prints},
|
36 |
+
year = 2016,
|
37 |
+
eid = {arXiv:1606.05250},
|
38 |
+
pages = {arXiv:1606.05250},
|
39 |
+
archivePrefix = {arXiv},
|
40 |
+
eprint = {1606.05250},
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
_DESCRIPTION = """\
|
45 |
+
Visual questions for data science
|
46 |
+
"""
|
47 |
+
|
48 |
+
_URL = "https://huggingface.co/datasets/eduvedras/VQG/resolve/main/images.tar.gz"
|
49 |
+
|
50 |
+
_METADATA_URLS = {
|
51 |
+
"train": "https://huggingface.co/datasets/eduvedras/VQG/resolve/main/metadata_train.csv",
|
52 |
+
"validation": "https://huggingface.co/datasets/eduvedras/VQG/resolve/main/metadata_validation.csv",
|
53 |
+
"test": "https://huggingface.co/datasets/eduvedras/VQG/resolve/main/metadata_test.csv"
|
54 |
+
},
|
55 |
+
|
56 |
+
class VQGTargz(datasets.GeneratorBasedBuilder):
|
57 |
+
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1."""
|
58 |
+
|
59 |
+
def _info(self):
|
60 |
+
return datasets.DatasetInfo(
|
61 |
+
description=_DESCRIPTION,
|
62 |
+
features=datasets.Features(
|
63 |
+
{
|
64 |
+
"Id": datasets.Value("string"),
|
65 |
+
"Question": datasets.Value("string"),
|
66 |
+
"Chart": datasets.Image(),
|
67 |
+
"Chart_name": datasets.Value("string"),
|
68 |
+
}
|
69 |
+
),
|
70 |
+
# No default supervised_keys (as we have to pass both question
|
71 |
+
# and context as input).
|
72 |
+
supervised_keys=None,
|
73 |
+
homepage="https://huggingface.co/datasets/eduvedras/VQG",
|
74 |
+
citation=_CITATION,
|
75 |
+
task_templates=[
|
76 |
+
QuestionAnsweringExtractive(
|
77 |
+
question_column="question", context_column="context", answers_column="answers"
|
78 |
+
)
|
79 |
+
],
|
80 |
+
)
|
81 |
+
|
82 |
+
def _split_generators(self, dl_manager):
|
83 |
+
path = dl_manager.download(_URL)
|
84 |
+
image_iters = dl_manager.iter_archive(path)
|
85 |
+
#split_metadata_path = dl_manager.download(_METADATA_URLS)
|
86 |
+
metadata_train_path = "https://huggingface.co/datasets/eduvedras/VQG/resolve/main/metadata_train.csv"
|
87 |
+
metadata_validation_path = "https://huggingface.co/datasets/eduvedras/VQG/resolve/main/metadata_validation.csv"
|
88 |
+
metadata_test_path = "https://huggingface.co/datasets/eduvedras/VQG/resolve/main/metadata_test.csv"
|
89 |
+
|
90 |
+
return [
|
91 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"images": image_iters,
|
92 |
+
"metadata_path": metadata_train_path}),
|
93 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"images": image_iters,
|
94 |
+
"metadata_path": metadata_validation_path}),
|
95 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"images": image_iters,
|
96 |
+
"metadata_path": metadata_test_path}),
|
97 |
+
]
|
98 |
+
|
99 |
+
def _generate_examples(self, images, metadata_path):
|
100 |
+
"""This function returns the examples in the raw (text) form."""
|
101 |
+
metadata = pd.read_csv(metadata_path)
|
102 |
+
idx = 0
|
103 |
+
for index, row in metadata.iterrows():
|
104 |
+
for filepath, image in images:
|
105 |
+
filepath = filepath.split('/')[-1]
|
106 |
+
if row['Chart'] in filepath:
|
107 |
+
yield idx, {
|
108 |
+
"Chart": {"path": filepath, "bytes": image.read()},
|
109 |
+
"Question": row['Question'],
|
110 |
+
"Id": row['Id'],
|
111 |
+
"Chart_name": row['Chart'],
|
112 |
+
}
|
113 |
+
break
|
114 |
+
idx += 1
|
images.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b8a9b93accf013b9174e2cbfc817ce2c0d4dc1ded6e929061fd53908fd4b5b9
|
3 |
+
size 133
|
metadata_test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata_train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata_validation.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|