title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Validating Gravity-Based Market Share Models Using Large-Scale Transactional Data
Customer patronage behavior has been widely studied in market share modeling contexts, which is an essential step towards modeling and solving competitive facility location problems. Existing studies have conducted surveys to estimate merchants' market share and factors of attractiveness to use in various proposed mathematical models. Recent trends in Big Data analysis allow us to better understand human behavior and decision making, potentially leading to location models with more realistic assumptions. In this paper, we propose a novel approach for validating Huff gravity market share model, using a large-scale transactional dataset that describes customer patronage behavior in a regional scale. Although the Huff model has been well-studied and widely used in the context of competitive facility location and demand allocation, this paper is the first in validating the Huff model with a real dataset. Our approach helps to easily apply the model in different regions and with different merchant categories. Experimental results show that the Huff model fits well when modeling customer shopping behavior for a number of shopping categories including grocery stores, clothing stores, gas stations, and restaurants. We also conduct regression analysis to show that certain features such as gender diversity and marital status diversity lead to stronger validation of the Huff model. We believe we provide strong evidence, with the help of real world data, that gravity-based market share models are viable assumptions for competitive facility location models.
stat
Deep Probabilistic Graphical Modeling
Probabilistic graphical modeling (PGM) provides a framework for formulating an interpretable generative process of data and expressing uncertainty about unknowns, but it lacks flexibility. Deep learning (DL) is an alternative framework for learning from data that has achieved great empirical success in recent years. DL offers great flexibility, but it lacks the interpretability and calibration of PGM. This thesis develops deep probabilistic graphical modeling (DPGM.) DPGM consists in leveraging DL to make PGM more flexible. DPGM brings about new methods for learning from data that exhibit the advantages of both PGM and DL. We use DL within PGM to build flexible models endowed with an interpretable latent structure. One model class we develop extends exponential family PCA using neural networks to improve predictive performance while enforcing the interpretability of the latent factors. Another model class we introduce enables accounting for long-term dependencies when modeling sequential data, which is a challenge when using purely DL or PGM approaches. Finally, DPGM successfully solves several outstanding problems of probabilistic topic models, a widely used family of models in PGM. DPGM also brings about new algorithms for learning with complex data. We develop reweighted expectation maximization, an algorithm that unifies several existing maximum likelihood-based algorithms for learning models parameterized by neural networks. This unifying view is made possible using expectation maximization, a canonical inference algorithm in PGM. We also develop entropy-regularized adversarial learning, a learning paradigm that deviates from the traditional maximum likelihood approach used in PGM. From the DL perspective, entropy-regularized adversarial learning provides a solution to the long-standing mode collapse problem of generative adversarial networks, a widely used DL approach.
stat
Gaussian Process for Functional Data Analysis: The GPFDA Package for R
We present and describe the GPFDA package for R. The package provides flexible functionalities for dealing with Gaussian process regression (GPR) models for functional data. Multivariate functional data, functional data with multidimensional inputs, and nonseparable and/or nonstationary covariance structures can be modeled. In addition, the package fits functional regression models where the mean function depends on scalar and/or functional covariates and the covariance structure is modeled by a GPR model. In this paper, we present the versatility of GPFDA with respect to mean function and covariance function specifications and illustrate the implementation of estimation and prediction of some models through reproducible numerical examples.
stat
A hypothesis test of feasibility for external pilot trials assessing recruitment, follow-up and adherence rates
The power of a large clinical trial can be adversely affected by low recruitment, follow-up and adherence rates. External pilot trials estimate these rates and use them, via pre-specified decision rules, to determine if the definitive trial is feasible and should go ahead. There is little methodological research underpinning how these decision rules, or the sample size of the pilot, should be chosen. In this paper we propose a hypothesis test of the feasibility of a definitive trial, to be applied to the external pilot data and used to make progression decisions. We quantify feasibility by the power of the planned trial, as a function of recruitment, follow-up and adherence rates. We use this measure to define hypotheses to test in the pilot, propose a test statistic, and show how the error rates of this test can be calculated for the common scenario of a two-arm parallel group definitive trial with a single normally distributed primary endpoint. We use our method to re-design TIGA-CUB, an external pilot trial comparing a psychotherapy with treatment as usual for children with conduct disorders. We then extend our formulation to include using the pilot data to estimate the standard deviation of the primary endpoint. and incorporate this into the progression decision.
stat
A Le Cam Type Bound for Adversarial Learning and Applications
Robustness of machine learning methods is essential for modern practical applications. Given the arms race between attack and defense methods, one may be curious regarding the fundamental limits of any defense mechanism. In this work, we focus on the problem of learning from noise-injected data, where the existing literature falls short by either assuming a specific attack method or by over-specifying the learning problem. We shed light on the information-theoretic limits of adversarial learning without assuming a particular learning process or attacker. Finally, we apply our general bounds to a canonical set of non-trivial learning problems and provide examples of common types of attacks.
stat
Efficient nonparametric inference on the effects of stochastic interventions under two-phase sampling, with applications to vaccine efficacy trials
The advent and subsequent widespread availability of preventive vaccines has altered the course of public health over the past century. Despite this success, effective vaccines to prevent many high-burden diseases, including HIV, have been slow to develop. Vaccine development can be aided by the identification of immune response markers that serve as effective surrogates for clinically significant infection or disease endpoints. However, measuring immune response marker activity is often costly, which has motivated the usage of two-phase sampling for immune response evaluation in clinical trials of preventive vaccines. In such trials, the measurement of immunological markers is performed on a subset of trial participants, where enrollment in this second phase is potentially contingent on the observed study outcome and other participant-level information. We propose nonparametric methodology for efficiently estimating a counterfactual parameter that quantifies the impact of a given immune response marker on the subsequent probability of infection. Along the way, we fill in theoretical gaps pertaining to the asymptotic behavior of nonparametric efficient estimators in the context of two-phase sampling, including a multiple robustness property enjoyed by our estimators. Techniques for constructing confidence intervals and hypothesis tests are presented, and an open source software implementation of the methodology, the txshift R package, is introduced. We illustrate the proposed techniques using data from a recent preventive HIV vaccine efficacy trial.
stat
On deletion diagnostic statistic in regression
A brief review about choosing a normalizing or scaling matrix for deletion diagnostic statistic in regression is made. Some results and comments are added.
stat
Harmonic Decompositions of Convolutional Networks
We present a description of the function space and the smoothness class associated with a convolutional network using the machinery of reproducing kernel Hilbert spaces. We show that the mapping associated with a convolutional network expands into a sum involving elementary functions akin to spherical harmonics. This functional decomposition can be related to the functional ANOVA decomposition in nonparametric statistics. Building off our functional characterization of convolutional networks, we obtain statistical bounds highlighting an interesting trade-off between the approximation error and the estimation error.
stat
$hv$-Block Cross Validation is not a BIBD: a Note on the Paper by Jeff Racine (2000)
This note corrects a mistake in the paper "consistent cross-validatory model-selection for dependent data: $hv$-block cross-validation" by Racine (2000). In his paper, he implied that the therein proposed $hv$-block cross-validation is consistent in the sense of Shao (1993). To get this intuition, he relied on the speculation that $hv$-block is a balanced incomplete block design (BIBD). This note demonstrates that this is not the case, and thus the theoretical consistency of $hv$-block remains an open question. In addition, I also provide a Python program counting the number of occurrences of each sample and each pair of samples.
stat
On the optimality of kernels for high-dimensional clustering
This paper studies the optimality of kernel methods in high-dimensional data clustering. Recent works have studied the large sample performance of kernel clustering in the high-dimensional regime, where Euclidean distance becomes less informative. However, it is unknown whether popular methods, such as kernel k-means, are optimal in this regime. We consider the problem of high-dimensional Gaussian clustering and show that, with the exponential kernel function, the sufficient conditions for partial recovery of clusters using the NP-hard kernel k-means objective matches the known information-theoretic limit up to a factor of $\sqrt{2}$ for large $k$. It also exactly matches the known upper bounds for the non-kernel setting. We also show that a semi-definite relaxation of the kernel k-means procedure matches up to constant factors, the spectral threshold, below which no polynomial-time algorithm is known to succeed. This is the first work that provides such optimality guarantees for the kernel k-means as well as its convex relaxation. Our proofs demonstrate the utility of the less known polynomial concentration results for random variables with exponentially decaying tails in a higher-order analysis of kernel methods.
stat
Exact Confidence Intervals for Linear Combinations of Multinomial Probabilities
Linear combinations of multinomial probabilities, such as those resulting from contingency tables, are of use when evaluating classification system performance. While large sample inference methods for these combinations exist, small sample methods exist only for regions on the multinomial parameter space instead of the linear combinations. However, in medical classification problems it is common to have small samples necessitating a small sample confidence interval on linear combinations of multinomial probabilities. Therefore, in this paper we derive an exact confidence interval, through the use of fiducial inference, for linear combinations of multinomial probabilities. Simulation demonstrates the presented interval's adherence to exact coverage. Additionally, an adjustment to the exact interval is provided, giving shorter lengths while still achieving better coverage than large sample methods. Computational efficiencies in estimation of the exact interval are achieved through the application of a fast Fourier transform and combining a numerical solver and stochastic optimizer to find solutions. The exact confidence interval presented in this paper allows for comparisons between diagnostic methods previously unavailable, demonstrated through an example of diagnosing chronic allograph nephropathy in post kidney transplant patients.
stat
Pseudo-Rehearsal for Continual Learning with Normalizing Flows
Catastrophic forgetting (CF) happens whenever a neural network overwrites past knowledge while being trained on new tasks. Common techniques to handle CF include regularization of the weights (using, e.g., their importance on past tasks), and rehearsal strategies, where the network is constantly re-trained on past data. Generative models have also been applied for the latter, in order to have endless sources of data. In this paper, we propose a novel method that combines the strengths of regularization and generative-based rehearsal approaches. Our generative model consists of a normalizing flow (NF), a probabilistic and invertible neural network, trained on the internal embeddings of the network. By keeping a single NF conditioned on the task, we show that our memory overhead remains constant. In addition, exploiting the invertibility of the NF, we propose a simple approach to regularize the network's embeddings with respect to past tasks. We show that our method performs favorably with respect to state-of-the-art approaches in the literature, with bounded computational power and memory overheads.
stat
Integration of Survival Data from Multiple Studies
We introduce a statistical procedure that integrates survival data from multiple biomedical studies, to improve the accuracy of predictions of survival or other events, based on individual clinical and genomic profiles, compared to models developed leveraging only a single study or meta-analytic methods. The method accounts for potential differences in the relation between predictors and outcomes across studies, due to distinct patient populations, treatments and technologies to measure outcomes and biomarkers. These differences are modeled explicitly with study-specific parameters. We use hierarchical regularization to shrink the study-specific parameters towards each other and to borrow information across studies. Shrinkage of the study-specific parameters is controlled by a similarity matrix, which summarizes differences and similarities of the relations between covariates and outcomes across studies. We illustrate the method in a simulation study and using a collection of gene-expression datasets in ovarian cancer. We show that the proposed model increases the accuracy of survival prediction compared to alternative meta-analytic methods.
stat
Dynamic Principal Subspaces with Sparsity in High Dimensions
Principal component analysis (PCA) is a versatile tool to reduce the dimensionality which has wide applications in statistics and machine learning community. It is particularly useful to model data in high-dimensional scenarios where the number of variables $p$ is comparable to, or much larger than the sample size $n$. Despite extensive literature on this topic, researches have focused on modeling static principal eigenvectors or subspaces, which is unsuitable for stochastic processes that are dynamic in nature. To characterize the change in the whole course of high-dimensional data collection, we propose a unified framework to estimate dynamic principal subspaces spanned by leading eigenvectors of covariance matrices. In the proposed framework, we formulate an optimization problem by combining the kernel smoothing and regularization penalty together with the orthogonality constraint, which can be effectively solved by the proximal gradient method for manifold optimization. We show that our method is suitable for high-dimensional data observed under both common and irregular designs. In addition, theoretical properties of the estimators are investigated under $l_q (0 \leq q \leq 1)$ sparsity. Extensive experiments demonstrate the effectiveness of the proposed method in both simulated and real data examples.
stat
Non-Smooth Backfitting for Excess Risk Additive Regression Model with Two Survival Time-Scales
We present a new backfitting algorithm estimating the complex structured non-parametric survival model of Scheike (2001) without having to use smoothing. The considered model is a non-parametric survival model with two time-scales that are equivalent up to a constant that varies over the subjects. Covariate effects are modelled linearly on each time scale by additive Aalen models. Estimators of the cumulative intensities on the two time-scales are suggested by solving local estimating equations jointly on the two time-scales. We are able to estimate the cumulative intensities solving backfitting estimating equations without using smoothing methods and we provide large sample properties and simultaneous confidence bands. The model is applied to data on myocardial infarction providing a separation of the two effects stemming from time since diagnosis and age.
stat
Discriminating between and within (semi)continuous classes of both Tweedie and geometric Tweedie models
In both Tweedie and geometric Tweedie models, the common power parameter $p\notin(0,1)$ works as an automatic distribution selection. It mainly separates two subclasses of semicontinuous ($1<p<2$) and positive continuous ($p\geq 2$) distributions. Our paper centers around exploring diagnostic tools based on the maximum likelihood ratio test and minimum Kolmogorov-Smirnov distance methods in order to discriminate very close distributions within each subclass of these two models according to values of $p$. Grounded on the unique equality of variation indices, we also discriminate the gamma and geometric gamma distributions with $p=2$ in Tweedie and geometric Tweedie families, respectively. Probabilities of correct selection for several combinations of dispersion parameters, means and sample sizes are examined by simulations. We thus perform a numerical comparison study to assess the discrimination procedures in these subclasses of two families. Finally, semicontinuous ($1<p\leq 2$) distributions in the broad sense are significantly more distinguishable than the over-varied continuous ($p>2$) ones; and two datasets for illustration purposes are investigated.
stat
Generalizing Variational Autoencoders with Hierarchical Empirical Bayes
Variational Autoencoders (VAEs) have experienced recent success as data-generating models by using simple architectures that do not require significant fine-tuning of hyperparameters. However, VAEs are known to suffer from over-regularization which can lead to failure to escape local maxima. This phenomenon, known as posterior collapse, prevents learning a meaningful latent encoding of the data. Recent methods have mitigated this issue by deterministically moment-matching an aggregated posterior distribution to an aggregate prior. However, abandoning a probabilistic framework (and thus relying on point estimates) can both lead to a discontinuous latent space and generate unrealistic samples. Here we present Hierarchical Empirical Bayes Autoencoder (HEBAE), a computationally stable framework for probabilistic generative models. Our key contributions are two-fold. First, we make gains by placing a hierarchical prior over the encoding distribution, enabling us to adaptively balance the trade-off between minimizing the reconstruction loss function and avoiding over-regularization. Second, we show that assuming a general dependency structure between variables in the latent space produces better convergence onto the mean-field assumption for improved posterior inference. Overall, HEBAE is more robust to a wide-range of hyperparameter initializations than an analogous VAE. Using data from MNIST and CelebA, we illustrate the ability of HEBAE to generate higher quality samples based on FID score than existing autoencoder-based approaches.
stat
Regularising Generalised Linear Mixed Models with an autoregressive random effect
We address regularised versions of the Expectation-Maximisation (EM) algorithm for Generalised Linear Mixed Models (GLMM) in the context of panel data (measured on several individuals at different time-points). A random response y is modelled by a GLMM, using a set X of explanatory variables and two random effects. The first one introduces the dependence within individuals on which data is repeatedly collected while the second one embodies the serially correlated time-specific effect shared by all the individuals. Variables in X are assumed many and redundant, so that regression demands regularisation. In this context, we first propose a L2-penalised EM algorithm, and then a supervised component-based regularised EM algorithm as an alternative.
stat
Generalizing trial evidence to target populations in non-nested designs: Applications to AIDS clinical trials
Comparative effectiveness evidence from randomized trials may not be directly generalizable to a target population of substantive interest when, as in most cases, trial participants are not randomly sampled from the target population. Motivated by the need to generalize evidence from two trials conducted in the AIDS Clinical Trials Group (ACTG), we consider weighting, regression and doubly robust estimators to estimate the causal effects of HIV interventions in a specified population of people living with HIV in the USA. We focus on a non-nested trial design and discuss strategies for both point and variance estimation of the target population average treatment effect. Specifically in the generalizability context, we demonstrate both analytically and empirically that estimating the known propensity score in trials does not increase the variance for each of the weighting, regression and doubly robust estimators. We apply these methods to generalize the average treatment effects from two ACTG trials to specified target populations and operationalize key practical considerations. Finally, we report on a simulation study that investigates the finite-sample operating characteristics of the generalizability estimators and their sandwich variance estimators.
stat
Mean shift cluster recognition method implementation in the nested sampling algorithm
Nested sampling is an efficient algorithm for the calculation of the Bayesian evidence and posterior parameter probability distributions. It is based on the step-by-step exploration of the parameter space by Monte Carlo sampling with a series of values sets called live points that evolve towards the region of interest, i.e. where the likelihood function is maximal. In presence of several local likelihood maxima, the algorithm converges with difficulty. Some systematic errors can also be introduced by unexplored parameter volume regions. In order to avoid this, different methods are proposed in the literature for an efficient search of new live points, even in presence of local maxima. Here we present a new solution based on the mean shift cluster recognition method implemented in a random walk search algorithm. The clustering recognition is integrated within the Bayesian analysis program NestedFit. It is tested with the analysis of some difficult cases. Compared to the analysis results without cluster recognition, the computation time is considerably reduced. At the same time, the entire parameter space is efficiently explored, which translates into a smaller uncertainty of the extracted value of the Bayesian evidence.
stat
Relaxed-Responsibility Hierarchical Discrete VAEs
Successfully training Variational Autoencoders (VAEs) with a hierarchy of discrete latent variables remains an area of active research. Vector-Quantised VAEs are a powerful approach to discrete VAEs, but naive hierarchical extensions can be unstable when training. Leveraging insights from classical methods of inference we introduce \textit{Relaxed-Responsibility Vector-Quantisation}, a novel way to parameterise discrete latent variables, a refinement of relaxed Vector-Quantisation that gives better performance and more stable training. This enables a novel approach to hierarchical discrete variational autoencoders with numerous layers of latent variables (here up to 32) that we train end-to-end. Within hierarchical probabilistic deep generative models with discrete latent variables trained end-to-end, we achieve state-of-the-art bits-per-dim results for various standard datasets. % Unlike discrete VAEs with a single layer of latent variables, we can produce samples by ancestral sampling: it is not essential to train a second autoregressive generative model over the learnt latent representations to then sample from and then decode. % Moreover, that latter approach in these deep hierarchical models would require thousands of forward passes to generate a single sample. Further, we observe different layers of our model become associated with different aspects of the data.
stat
Oracle lower bounds for stochastic gradient sampling algorithms
We consider the problem of sampling from a strongly log-concave density in $\mathbb{R}^d$, and prove an information theoretic lower bound on the number of stochastic gradient queries of the log density needed. Several popular sampling algorithms (including many Markov chain Monte Carlo methods) operate by using stochastic gradients of the log density to generate a sample; our results establish an information theoretic limit for all these algorithms. We show that for every algorithm, there exists a well-conditioned strongly log-concave target density for which the distribution of points generated by the algorithm would be at least $\epsilon$ away from the target in total variation distance if the number of gradient queries is less than $\Omega(\sigma^2 d/\epsilon^2)$, where $\sigma^2 d$ is the variance of the stochastic gradient. Our lower bound follows by combining the ideas of Le Cam deficiency routinely used in the comparison of statistical experiments along with standard information theoretic tools used in lower bounding Bayes risk functions. To the best of our knowledge our results provide the first nontrivial dimension-dependent lower bound for this problem.
stat
Contextual Stress and Maternal Sensitivity: A Meta-Analytic Review of Stress Associations with the Maternal Behavior Q-Sort in Observational Studies
Maternal sensitivity is a modifiable determinant of infant attachment security and a precursor to optimal child development. Contextual stressors undermine sensitivity, but research was yet to be synthesized. We aimed to identify i) types of stress associations analyzed in studies of maternal sensitivity and ii) the strength of effects of various stress factors. A systematic search identified all studies that used the Maternal Behavior Q-Sort (MBQS) to code sensitivity in dyadic observations and that reported a coefficient for MBQS associations with contextual stress. Identified stressors cohered around three spheres: sociodemography (maternal education, family income, composite SES, maternal age and cohabitation status); parenting stress (perceived maternal stress related to parenting); and mental health (specifically maternal internalizing symptoms). Seven meta-analyses (combined ns range 223-1239) of a subset of 30 effects from 20 articles, and a multi-level meta-analysis (N=1324) assessed aggregated correlations with sensitivity. Significant mean effects emerged in expected directions, whereby all stress indicators were negatively associated with sensitivity. Small effects were found for associations with parenting stress (r=-0.13) and mental health indicators (r=-0.12). Generally moderate effects were found for associations with socio-demographic indicators (range r=-0.12 to r=0.32). Emerging findings support the proposition that in various contexts of stress, maternal sensitivity to infant needs can be undermined. Implications and research directions are discussed.
stat
Introducing a Generative Adversarial Network Model for Lagrangian Trajectory Simulation
We introduce a generative adversarial network (GAN) model to simulate the 3-dimensional Lagrangian motion of particles trapped in the recirculation zone of a buoyancy-opposed flame. The GAN model comprises a stochastic recurrent neural network, serving as a generator, and a convoluted neural network, serving as a discriminator. Adversarial training was performed to the point where the best-trained discriminator failed to distinguish the ground truth from the trajectory produced by the best-trained generator. The model performance was then benchmarked against a statistical analysis performed on both the simulated trajectories and the ground truth, with regard to the accuracy and generalization criteria.
stat
Incorporating structured assumptions with probabilistic graphical models in fMRI data analysis
With the wide adoption of functional magnetic resonance imaging (fMRI) by cognitive neuroscience researchers, large volumes of brain imaging data have been accumulated in recent years. Aggregating these data to derive scientific insights often faces the challenge that fMRI data are high-dimensional, heterogeneous across people, and noisy. These challenges demand the development of computational tools that are tailored both for the neuroscience questions and for the properties of the data. We review a few recently developed algorithms in various domains of fMRI research: fMRI in naturalistic tasks, analyzing full-brain functional connectivity, pattern classification, inferring representational similarity and modeling structured residuals. These algorithms all tackle the challenges in fMRI similarly: they start by making clear statements of assumptions about neural data and existing domain knowledge, incorporating those assumptions and domain knowledge into probabilistic graphical models, and using those models to estimate properties of interest or latent structures in the data. Such approaches can avoid erroneous findings, reduce the impact of noise, better utilize known properties of the data, and better aggregate data across groups of subjects. With these successful cases, we advocate wider adoption of explicit model construction in cognitive neuroscience. Although we focus on fMRI, the principle illustrated here is generally applicable to brain data of other modalities.
stat
Variable Selection in Regression-based Estimation of Dynamic Treatment Regimes
Dynamic treatment regimes (DTRs) consist of a sequence of decision rules, one per stage of intervention, that finds effective treatments for individual patients according to patient information history. DTRs can be estimated from models which include the interaction between treatment and a small number of covariates which are often chosen a priori. However, with increasingly large and complex data being collected, it is difficult to know which prognostic factors might be relevant in the treatment rule. Therefore, a more data-driven approach of selecting these covariates might improve the estimated decision rules and simplify models to make them easier to interpret. We propose a variable selection method for DTR estimation using penalized dynamic weighted least squares. Our method has the strong heredity property, that is, an interaction term can be included in the model only if the corresponding main terms have also been selected. Through simulations, we show our method has both the double robustness property and the oracle property, and the newly proposed methods compare favorably with other variable selection approaches.
stat
A new Granger causality measure for eliminating the confounding influence of latent common inputs
In this paper, we propose a new Granger causality measure which is robust against the confounding influence of latent common inputs. This measure is inspired by partial Granger causality in the literature, and its variant. Using numerical experiments we first show that the test statistics for detecting directed interactions between time series approximately obey the $F$-distributions when there are no interactions. Then, we propose a practical procedure for inferring directed interactions, which is based on the idea of multiple statistical test in situations where the confounding influence of latent common inputs may exist. The results of numerical experiments demonstrate that the proposed method successfully eliminates the influence of latent common inputs while the normal Granger causality method detects spurious interactions due to the influence of the confounder.
stat
Predicting Infection of COVID-19 in Japan: State Space Modeling Approach
The number of confirmed cases of the coronavirus disease (COVID-19) in Japan has been increasing day by day and has had a serious impact on the society especially after the declaration of the state of emergency on April 7, 2020. This study analyzes the real time data from March 1 to April 22, 2020 by adopting a sophisticated statistical modeling tool based on the state space model combined with the well-known susceptible-exposed-infected (SIR) model. The model estimation and forecasting are conducted using the Bayesian methodology. The present study provides the parameter estimates of the unknown parameters that critically determine the epidemic process derived from the SIR model and prediction of the future transition of the infectious proportion including the size and timing of the epidemic peak with the prediction intervals that naturally accounts for the uncertainty. The prediction results under various scenarios reveals that the temporary reduction in the infection rate until the planned lifting of the state on May 6 will only delay the epidemic peak slightly. In order to minimize the spread of the epidemic, it is strongly suggested that an intervention is carried out for an extended period of time and that the government and individuals make a long term effort to reduce the infection rate even after the lifting.
stat
Predicting the Output From a Stochastic Computer Model When a Deterministic Approximation is Available
The analysis of computer models can be aided by the construction of surrogate models, or emulators, that statistically model the numerical computer model. Increasingly, computer models are becoming stochastic, yielding different outputs each time they are run, even if the same input values are used. Stochastic computer models are more difficult to analyse and more difficult to emulate - often requiring substantially more computer model runs to fit. We present a method of using deterministic approximations of the computer model to better construct an emulator. The method is applied to numerous toy examples, as well as an idealistic epidemiology model, and a model from the building performance field.
stat
Advantage of Deep Neural Networks for Estimating Functions with Singularity on Curves
We develop a theory to elucidate the reason that deep neural networks (DNNs) perform better than other methods. In terms of the nonparametric regression problem, it is well known that many standard methods attain the minimax optimal rate of estimation errors for smooth functions, and thus, it is not straightforward to identify the theoretical advantages of DNNs. This study fills this gap by considering the estimation for a class of non-smooth functions with singularities on smooth curves. Our findings are as follows: (i) We derive the generalization error of a DNN estimator and prove that its convergence rate is almost optimal. (ii) We reveal that a certain class of common models are sub-optimal, including linear estimators and other harmonic analysis methods such as wavelets and curvelets. This advantage of DNNs comes from a fact that a shape of singularity can be successfully handled by their multi-layered structure.
stat
Optimizing Ensemble Weights and Hyperparameters of Machine Learning Models for Regression Problems
Aggregating multiple learners through an ensemble of models aim to make better predictions by capturing the underlying distribution of the data more accurately. Different ensembling methods, such as bagging, boosting, and stacking/blending, have been studied and adopted extensively in research and practice. While bagging and boosting focus more on reducing variance and bias, respectively, stacking approaches target both by finding the optimal way to combine base learners. In stacking with the weighted average, ensembles are created from weighted averages of multiple base learners. It is known that tuning hyperparameters of each base learner inside the ensemble weight optimization process can produce better performing ensembles. To this end, an optimization-based nested algorithm that considers tuning hyperparameters as well as finding the optimal weights to combine ensembles (Generalized Weighted Ensemble with Internally Tuned Hyperparameters (GEM-ITH)) is designed. Besides, Bayesian search was used to speed-up the optimizing process, and a heuristic was implemented to generate diverse and well-performing base learners. The algorithm is shown to be generalizable to real data sets through analyses with ten publicly available data sets.
stat
Flexible Predictive Distributions from Varying-Thresholds Modelling
A general class of models is proposed that is able to estimate the whole predictive distribution of a dependent variable $Y$ given a vector of explanatory variables $\xb$. The models exploit that the strength of explanatory variables to distinguish between low and high values of the dependent variable may vary across the thresholds that are used to define low and high. Simple linear versions of the models are generalizations of classical linear regression models but also of widely used ordinal regression models. They allow to visualize the effect of explanatory variables in the form of parameter functions. More general models are based on efficient nonparametric approaches like random forests, which are more flexible and are strong prediction tools. A general estimation method is given that can use all the estimation tools that have been proposed for binary regression, including selection methods like the lasso or elastic net. For linearly structured models maximum likelihood estimates are derived. The usefulness of the models is illustrated by simulations and several real data set.
stat
Testing for publication bias in meta-analysis under Copas selection model
In meta-analyses, publication bias is a well-known, important and challenging issue because the validity of the results from a meta-analysis is threatened if the sample of studies retrieved for review is biased. One popular method to deal with publication bias is the Copas selection model, which provides a flexible sensitivity analysis for correcting the estimates with considerable insight into the data suppression mechanism. However, rigorous testing procedures under the Copas selection model to detect bias are lacking. To fill this gap, we develop a score-based test for detecting publication bias under the Copas selection model. We reveal that the behavior of the standard score test statistic is irregular because the parameters of the Copas selection model disappear under the null hypothesis, leading to an identifiability problem. We propose a novel test statistic and derive its limiting distribution. A bootstrap procedure is provided to obtain the p-value of the test for practical applications. We conduct extensive Monte Carlo simulations to evaluate the performance of the proposed test and apply the method to several existing meta-analyses.
stat
The Geometry of Over-parameterized Regression and Adversarial Perturbations
Classical regression has a simple geometric description in terms of a projection of the training labels onto the column space of the design matrix. However, for over-parameterized models -- where the number of fit parameters is large enough to perfectly fit the training data -- this picture becomes uninformative. Here, we present an alternative geometric interpretation of regression that applies to both under- and over-parameterized models. Unlike the classical picture which takes place in the space of training labels, our new picture resides in the space of input features. This new feature-based perspective provides a natural geometric interpretation of the double-descent phenomenon in the context of bias and variance, explaining why it can occur even in the absence of label noise. Furthermore, we show that adversarial perturbations -- small perturbations to the input features that result in large changes in label values -- are a generic feature of biased models, arising from the underlying geometry. We demonstrate these ideas by analyzing three minimal models for over-parameterized linear least squares regression: without basis functions (input features equal model features) and with linear or nonlinear basis functions (two-layer neural networks with linear or nonlinear activation functions, respectively).
stat
Structured Shrinkage Priors
In many regression settings the unknown coefficients may have some known structure, for instance they may be ordered in space or correspond to a vectorized matrix or tensor. At the same time, the unknown coefficients may be sparse, with many nearly or exactly equal to zero. However, many commonly used priors and corresponding penalties for coefficients do not encourage simultaneously structured and sparse estimates. In this paper we develop structured shrinkage priors that generalize multivariate normal, Laplace, exponential power and normal-gamma priors. These priors allow the regression coefficients to be correlated a priori without sacrificing elementwise sparsity or shrinkage. The primary challenges in working with these structured shrinkage priors are computational, as the corresponding penalties are intractable integrals and the full conditional distributions that are needed to approximate the posterior mode or simulate from the posterior distribution may be non-standard. We overcome these issues using a flexible elliptical slice sampling procedure, and demonstrate that these priors can be used to introduce structure while preserving sparsity of the corresponding penalized estimate given by the posterior mode.
stat
Spatially Adaptive Colocalization Analysis in Dual-Color Fluorescence Microscopy
Colocalization analysis aims to study complex spatial associations between bio-molecules via optical imaging techniques. However, existing colocalization analysis workflows only assess an average degree of colocalization within a certain region of interest and ignore the unique and valuable spatial information offered by microscopy. In the current work, we introduce a new framework for colocalization analysis that allows us to quantify colocalization levels at each individual location and automatically identify pixels or regions where colocalization occurs. The framework, referred to as spatially adaptive colocalization analysis (SACA), integrates a pixel-wise local kernel model for colocalization quantification and a multi-scale adaptive propagation-separation strategy for utilizing spatial information to detect colocalization in a spatially adaptive fashion. Applications to simulated and real biological datasets demonstrate the practical merits of SACA in what we hope to be an easily applicable and robust colocalization analysis method. In addition, theoretical properties of SACA are investigated to provide rigorous statistical justification.
stat
Sample size calculations for single-arm survival studies using transformations of the Kaplan-Meier estimator
In single-arm clinical trials with survival outcomes, the Kaplan-Meier estimator and its confidence interval are widely used to assess survival probability and median survival time. Since the asymptotic normality of the Kaplan-Meier estimator is a common result, the sample size calculation methods have not been studied in depth. An existing sample size calculation method is founded on the asymptotic normality of the Kaplan-Meier estimator using the log transformation. However, the small sample properties of the log transformed estimator are quite poor in small sample sizes (which are typical situations in single-arm trials), and the existing method uses an inappropriate standard normal approximation to calculate sample sizes. These issues can seriously influence the accuracy of results. In this paper, we propose alternative methods to determine sample sizes based on a valid standard normal approximation with several transformations that may give an accurate normal approximation even with small sample sizes. In numerical evaluations via simulations, some of the proposed methods provided more accurate results, and the empirical power of the proposed method with the arcsine square-root transformation tended to be closer to a prescribed power than the other transformations. These results were supported when methods were applied to data from three clinical trials.
stat
Stochastic parameterization with VARX processes
In this study we investigate a data-driven stochastic methodology to parameterize small-scale features in a prototype multiscale dynamical system, the Lorenz '96 (L96) model. We propose to model the small-scale features using a vector autoregressive process with exogenous variable (VARX), estimated from given sample data. To reduce the number of parameters of the VARX we impose a diagonal structure on its coefficient matrices. We apply the VARX to two different configurations of the 2-layer L96 model, one with common parameter choices giving unimodal invariant probability distributions for the L96 model variables, and one with non-standard parameters giving trimodal distributions. We show through various statistical criteria that the proposed VARX performs very well for the unimodal configuration, while keeping the number of parameters linear in the number of model variables. We also show that the parameterization performs accurately for the very challenging trimodal L96 configuration by allowing for a dense (non-diagonal) VARX covariance matrix.
stat
An Instrumental Variable Estimator for Mixed Indicators: Analytic Derivatives and Alternative Parameterizations
Methodological development of the Model-implied Instrumental Variable (MIIV) estimation framework has proved fruitful over the last three decades. Major milestones include Bollen's (1996) original development of the MIIV estimator and its robustness properties for continuous endogenous variable SEMs, the extension of the MIIV estimator to ordered categorical endogenous variables (Bollen \& Maydeu-Olivares, 2007), and the introduction of a Generalized Method of Moments (GMM) estimator (Bollen, Kolenikov \& Bauldry, 2014). This paper furthers these developments by making several unique contributions not present in the prior literature: (1) we use matrix calculus to derive the analytic derivatives of the PIV estimator, (2) we extend the PIV estimator to apply to any mixture of binary, ordinal, and continuous variables, (3) we generalize the PIV model to include intercepts and means, (4) we devise a method to input known threshold values for ordinal observed variables, and (5) we enable a general parameterization that permits the estimation of means, variances, and covariances of the underlying variables to use as input into a SEM analysis with PIV. An empirical example illustrates a mixture of continuous variables and ordinal variables with fixed thresholds. We also include a simulation study to compare the performance of this novel estimator to WLSMV.
stat
Achieving higher taxi outflows from a congested drop-off lane: a simulation-based policy study
We examine special lanes used by taxis and other shared-ride services to drop-off patrons at airport and rail terminals. Vehicles are prohibited from overtaking each other within the lane. They must therefore wait in a first-in-first-out queue during busy periods. Patrons are often discharged from vehicles only upon reaching a desired drop-off area near the terminal entrance. When wait times grow long, however, some vehicles discharge their patrons in advance of that desired area. A train station in Eastern China is selected as a case study. Its FIFO drop-off lane is presently managed by policemen who allow taxis to enter the lane in batched fashion. Inefficiencies are observed because curb space near the terminal often goes unused. This is true even when supplemental batches of taxis are released into the lane in efforts to fill those spaces. A microscopic simulation model of a FIFO drop-off lane is developed in-house, and is painstakingly calibrated to data measured at the study site. Simulation experiments indicate that rescinding the FIFO lane's present batching strategy can increase taxi outflow by more than 26 percent. Further experiments show that even greater gains can be achieved by batching taxis, but requiring them to discharge patrons when forced by downstream queues to stop a prescribed distance in advance of a desired drop-off area. Further gains were predicted by requiring the lead taxi in each batch to discharge its patron only after travelling a prescribed distance beyond a desired location. Practical implications are discussed in light of the present boom in shared-ride services.
stat
Modeling spatial data using local likelihood estimation and a Mat\'ern to SAR translation
Modeling data with non-stationary covariance structure is important to represent heterogeneity in geophysical and other environmental spatial processes. In this work, we investigate a multistage approach to modeling non-stationary covariances that is efficient for large data sets. First, we use likelihood estimation in local, moving windows to infer spatially varying covariance parameters. These surfaces of covariance parameters can then be encoded into a global covariance model specifying the second-order structure for the complete spatial domain. The resulting global model allows for efficient simulation and prediction. We investigate the non-stationary spatial autoregressive (SAR) model related to Gaussian Markov random field (GMRF) methods, which is amenable to plug in local estimates and practical for large data sets. In addition we use a simulation study to establish the accuracy of local Mat\'ern parameter estimation as a reliable technique when replicate fields are available and small local windows are exploited to reduce computation. This multistage modeling approach is implemented on a non-stationary climate model output data set with the goal of emulating the variation in the numerical model ensemble using a Gaussian process.
stat
Bayesian Nonparametric Boolean Factor Models
We build upon probabilistic models for Boolean Matrix and Boolean Tensor factorisation that have recently been shown to solve these problems with unprecedented accuracy and to enable posterior inference to scale to Billions of observation. Here, we lift the restriction of a pre-specified number of latent dimensions by introducing an Indian Buffet Process prior over factor matrices. Not only does the full factor-conditional take a computationally convenient form due to the logical dependencies in the model, but also the posterior over the number of non-zero latent dimensions is remarkably simple. It amounts to counting the number false and true negative predictions, whereas positive predictions can be ignored. This constitutes a very transparent example of sampling-based posterior inference with an IBP prior and, importantly, lets us maintain extremely efficient inference. We discuss applications to simulated data, as well as to a real world data matrix with 6 Million entries.
stat
Selecting Reduced Models in the Cross-Entropy Method
This paper deals with the estimation of rare event probabilities using importance sampling (IS), where an optimal proposal distribution is computed with the cross-entropy (CE) method. Although, IS optimized with the CE method leads to an efficient reduction of the estimator variance, this approach remains unaffordable for problems where the repeated evaluation of the score function represents a too intensive computational effort. This is often the case for score functions related to the solution of a partial differential equation (PDE) with random inputs. This work proposes to alleviate computation by the parsimonious use of a hierarchy of score function approximations in the CE optimization process. The score function approximation is obtained by selecting the surrogate of lowest dimensionality, whose accuracy guarantees to pass the current CE optimization stage. The selection relies on certified upper bounds on the error norm. An asymptotic analysis provides some theoretical guarantees on the efficiency and convergence of the proposed algorithm. Numerical results demonstrate the gain brought by the method in the context of pollution alerts and a system modeled by a PDE.
stat
Integrated Nested Laplace Approximations (INLA)
This is a short description and basic introduction to the Integrated nested Laplace approximations (INLA) approach. INLA is a deterministic paradigm for Bayesian inference in latent Gaussian models (LGMs) introduced in Rue et al. (2009). INLA relies on a combination of analytical approximations and efficient numerical integration schemes to achieve highly accurate deterministic approximations to posterior quantities of interest. The main benefit of using INLA instead of Markov chain Monte Carlo (MCMC) techniques for LGMs is computational; INLA is fast even for large, complex models. Moreover, being a deterministic algorithm, INLA does not suffer from slow convergence and poor mixing. INLA is implemented in the R package R-INLA, which represents a user-friendly and versatile tool for doing Bayesian inference. R-INLA returns posterior marginals for all model parameters and the corresponding posterior summary information. Model choice criteria as well as predictive diagnostics are directly available. Here, we outline the theory behind INLA, present the R-INLA package and describe new developments of combining INLA with MCMC for models that are not possible to fit with R-INLA.
stat
Model-agnostic Feature Importance and Effects with Dependent Features -- A Conditional Subgroup Approach
Partial dependence plots and permutation feature importance are popular model-agnostic interpretation methods. Both methods are based on predicting artificially created data points. When features are dependent, both methods extrapolate to feature areas with low data density. The extrapolation can cause misleading interpretations. To overcome extrapolation, we propose conditional variants of partial dependence plots and permutation feature importance. Our approach is based on perturbations in subgroups. The subgroups partition the feature space to make the feature distribution within a group more homogeneous and between the groups more heterogeneous. The interpretable subgroups enable additional local, nuanced interpretations of the feature dependence structure as well as the feature effects and importance values within the subgroups. We also introduce a data fidelity measure that captures the degree of extrapolation when data is transformed with a certain perturbation. In simulations and benchmarks on real data we show that our conditional interpretation methods reduce extrapolation. In an application we show that these methods provide more nuanced and richer explanations.
stat
Implementation of Correlation and Regression Models for Health Insurance Fraud in Covid-19 Environment using Actuarial and Data Science Techniques
Fraud acts as a major deterrent to a companys growth if uncontrolled. It challenges the fundamental value of Trust in the Insurance business. COVID-19 brought additional challenges of increased potential fraud to health insurance business. This work describes implementation of existing and enhanced fraud detection methods in the pre-COVID-19 and COVID-19 environments. For this purpose, we have developed an innovative enhanced fraud detection framework using actuarial and data science techniques. Triggers specific to COVID-19 are identified in addition to the existing triggers. We have also explored the relationship between insurance fraud and COVID-19. To determine this we calculated Pearson correlation coefficient and fitted logarithmic regression model between fraud in health insurance and COVID-19 cases. This work uses two datasets: health insurance dataset and Kaggle dataset on COVID-19 cases for the same select geographical location in India. Our experimental results shows Pearson correlation coefficient of 0.86, which implies that the month on month rate of fraudulent cases is highly correlated with month on month rate of COVID-19 cases. The logarithmic regression performed on the data gave the r-squared value of 0.91 which indicates that the model is a good fit. This work aims to provide much needed tools and techniques for health insurance business to counter the fraud.
stat
SODEN: A Scalable Continuous-Time Survival Model through Ordinary Differential Equation Networks
In this paper, we propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms. One key technical challenge for directly applying maximum likelihood estimation (MLE) to censored data is that evaluating the objective function and its gradients with respect to model parameters requires the calculation of integrals. To address this challenge, we recognize that the MLE for censored data can be viewed as a differential-equation constrained optimization problem, a novel perspective. Following this connection, we model the distribution of event time through an ordinary differential equation and utilize efficient ODE solvers and adjoint sensitivity analysis to numerically evaluate the likelihood and the gradients. Using this approach, we are able to 1) provide a broad family of continuous-time survival distributions without strong structural assumptions, 2) obtain powerful feature representations using neural networks, and 3) allow efficient estimation of the model in large-scale applications using stochastic gradient descent. Through both simulation studies and real-world data examples, we demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
stat
Efficiently transporting causal (in)direct effects to new populations under intermediate confounding and with multiple mediators
The same intervention can produce different effects in different sites. Transport mediation estimators can estimate the extent to which such differences can be explained by differences in compositional factors and the mechanisms by which mediating or intermediate variables are produced; however, they are limited to consider a single, binary mediator. We propose novel nonparametric estimators of transported stochastic (in)direct effects that consider multiple, high-dimensional mediators and intermediate variables. They are multiply robust, efficient, asymptotically normal, and can incorporate data-adaptive estimation of nuisance parameters. They can be applied to understand differences in treatment effects across sites and/or to predict treatment effects in a target site based on outcome data in source sites.
stat
Streaming computation of optimal weak transport barycenters
We introduce the weak barycenter of a family of probability distributions, based on the recently developed notion of optimal weak transport of measures arXiv:1412.7480(v4). We provide a theoretical analysis of the weak barycenter and its relationship to the classic Wasserstein barycenter, and discuss its meaning in the light of convex ordering between probability measures. In particular, we argue that, rather than averaging the information of the input distributions as done by the usual optimal transport barycenters, weak barycenters contain geometric information shared across all input distributions, which can be interpreted as a latent random variable affecting all the measures. We also provide iterative algorithms to compute a weak barycenter for either finite or infinite families of arbitrary measures (with finite moments of order 2), which are particularly well suited for the streaming setting, i.e., when measures arrive sequentially. In particular, our streaming computation of weak barycenters does not require to smooth empirical measures or to define a common grid for them, as some of the previous approaches to Wasserstin barycenters do. The concept of weak barycenter and our computation approaches are illustrated on synthetic examples, validated on 2D real-world data and compared to the classical Wasserstein barycenters.
stat
Bayesian Projected Calibration of Computer Models
We develop a Bayesian approach called Bayesian projected calibration to address the problem of calibrating an imperfect computer model using observational data from a complex physical system. The calibration parameter and the physical system are parametrized in an identifiable fashion via $L_2$-projection. The physical process is assigned a Gaussian process prior, which naturally induces a prior distribution on the calibration parameter through the $L_2$-projection constraint. The calibration parameter is estimated through its posterior distribution, which provides a natural and non-asymptotic way for the uncertainty quantification. We provide a rigorous large sample justification for the proposed approach by establishing the asymptotic normality of the posterior of the calibration parameter with the efficient covariance matrix. In addition, two efficient computational algorithms based on stochastic approximation are designed with theoretical guarantees. Through extensive simulation studies and two real-world datasets analyses, we show that the Bayesian projected calibration can accurately estimate the calibration parameters, appropriately calibrate the computer models, and compare favorably to alternative approaches.
stat
Independent Approximates enable closed-form estimation of heavy-tailed distributions
Independent Approximates (IAs) are proven to enable a closed-form estimation of heavy-tailed distributions with an analytical density such as the generalized Pareto and Student's t distributions. A broader proof using convolution of the characteristic function is described for future research. (IAs) are selected from independent, identically distributed samples by partitioning the samples into groups of size n and retaining the median of the samples in those groups which have approximately equal samples. The marginal distribution along the diagonal of equal values has a density proportional to the nth power of the original density. This nth power density, which the IAs approximate, has faster tail decay enabling closed-form estimation of its moments and retains a functional relationship with the original density. Computational experiments with between 1000 to 100,000 Student's t samples are reported for over a range of location, scale, and shape (inverse of degree of freedom) parameters. IA pairs are used to estimate the location, IA triplets for the scale, and the geometric mean of the original samples for the shape. With 10,000 samples the relative bias of the parameter estimates is less than 0.01 and a relative precision is less than plus or minus 0.1. The theoretical bias is zero for the location and the finite bias for the scale can be subtracted out. The theoretical precision has a finite range when the shape is less than 2 for the location estimate and less than 3/2 for the scale estimate. The boundary of finite precision can be extended using higher-order IAs.
stat
Identifying overlapping terrorist cells from the Noordin Top actor-event network
Actor-event data are common in sociological settings, whereby one registers the pattern of attendance of a group of social actors to a number of events. We focus on 79 members of the Noordin Top terrorist network, who were monitored attending 45 events. The attendance or non-attendance of the terrorist to events defines the social fabric, such as group coherence and social communities. The aim of the analysis of such data is to learn about the affiliation structure. Actor-event data is often transformed to actor-actor data in order to be further analysed by network models, such as stochastic block models. This transformation and such analyses lead to a natural loss of information, particularly when one is interested in identifying, possibly overlapping, subgroups or communities of actors on the basis of their attendances to events. In this paper we propose an actor-event model for overlapping communities of terrorists, which simplifies interpretation of the network. We propose a mixture model with overlapping clusters for the analysis of the binary actor-event network data, called {\tt manet}, and develop a Bayesian procedure for inference. After a simulation study, we show how this analysis of the terrorist network has clear interpretative advantages over the more traditional approaches of affiliation network analysis.
stat
Sparse Identification of Nonlinear Dynamical Systems via Reweighted $\ell_1$-regularized Least Squares
This work proposes an iterative sparse-regularized regression method to recover governing equations of nonlinear dynamical systems from noisy state measurements. The method is inspired by the Sparse Identification of Nonlinear Dynamics (SINDy) approach of {\it [Brunton et al., PNAS, 113 (15) (2016) 3932-3937]}, which relies on two main assumptions: the state variables are known {\it a priori} and the governing equations lend themselves to sparse, linear expansions in a (nonlinear) basis of the state variables. The aim of this work is to improve the accuracy and robustness of SINDy in the presence of state measurement noise. To this end, a reweighted $\ell_1$-regularized least squares solver is developed, wherein the regularization parameter is selected from the corner point of a Pareto curve. The idea behind using weighted $\ell_1$-norm for regularization -- instead of the standard $\ell_1$-norm -- is to better promote sparsity in the recovery of the governing equations and, in turn, mitigate the effect of noise in the state variables. We also present a method to recover single physical constraints from state measurements. Through several examples of well-known nonlinear dynamical systems, we demonstrate empirically the accuracy and robustness of the reweighted $\ell_1$-regularized least squares strategy with respect to state measurement noise, thus illustrating its viability for a wide range of potential applications.
stat
Learning to Project in Multi-Objective Binary Linear Programming
In this paper, we investigate the possibility of improving the performance of multi-objective optimization solution approaches using machine learning techniques. Specifically, we focus on multi-objective binary linear programs and employ one of the most effective and recently developed criterion space search algorithms, the so-called KSA, during our study. This algorithm computes all nondominated points of a problem with p objectives by searching on a projected criterion space, i.e., a (p-1)-dimensional criterion apace. We present an effective and fast learning approach to identify on which projected space the KSA should work. We also present several generic features/variables that can be used in machine learning techniques for identifying the best projected space. Finally, we present an effective bi-objective optimization based heuristic for selecting the best subset of the features to overcome the issue of overfitting in learning. Through an extensive computational study over 2000 instances of tri-objective Knapsack and Assignment problems, we demonstrate that an improvement of up to 12% in time can be achieved by the proposed learning method compared to a random selection of the projected space.
stat
Algorithms for ridge estimation with convergence guarantees
The extraction of filamentary structure from a point cloud is discussed. The filaments are modeled as ridge lines or higher dimensional ridges of an underlying density. We propose two novel algorithms, and provide theoretical guarantees for their convergences. We consider the new algorithms as alternatives to the Subspace Constraint Mean Shift (SCMS) algorithm that do not suffer from a shortcoming of the SCMS that is also revealed in this paper.
stat
Estimating Knots and Their Association in Parallel Bilinear Spline Growth Curve Models in the Framework of Individual Measurement Occasions
Latent growth curve models with spline functions are flexible and accessible statistical tools for investigating nonlinear change patterns that exhibit distinct phases of development in manifested variables. Among such models, the bilinear spline growth model (BLSGM) is the most straightforward and intuitive but useful. An existing study has demonstrated that the BLSGM allows the knot (or change-point), at which two linear segments join together, to be an additional growth factor other than the intercept and slopes so that researchers can estimate the knot and its variability in the framework of individual measurement occasions. However, developmental processes usually unfold in a joint development where two or more outcomes and their change patterns are correlated over time. As an extension of the existing BLSGM with an unknown knot, this study considers a parallel BLSGM (PBLSGM) for investigating multiple nonlinear growth processes and estimating the knot with its variability of each process as well as the knot-knot association in the framework of individual measurement occasions. We present the proposed model by simulation studies and a real-world data analysis. Our simulation studies demonstrate that the proposed PBLSGM generally estimate the parameters of interest unbiasedly, precisely and exhibit appropriate confidence interval coverage. An empirical example using longitudinal reading scores, mathematics scores, and science scores shows that the model can estimate the knot with its variance for each growth curve and the covariance between two knots. We also provide the corresponding code for the proposed model.
stat
Probabilistic modeling of discrete structural response with application to composite plate penetration models
Discrete response of structures is often a key probabilistic quantity of interest. For example, one may need to identify the probability of a binary event, such as, whether a structure has buckled or not. In this study, an adaptive domain-based decomposition and classification method, combined with sparse grid sampling, is used to develop an efficient classification surrogate modeling algorithm for such discrete outputs. An assumption of monotonic behaviour of the output with respect to all model parameters, based on the physics of the problem, helps to reduce the number of model evaluations and makes the algorithm more efficient. As an application problem, this paper deals with the development of a computational framework for generation of probabilistic penetration response of S-2 glass/SC-15 epoxy composite plates under ballistic impact. This enables the computationally feasible generation of the probabilistic velocity response (PVR) curve or the $V_0-V_{100}$ curve as a function of the impact velocity, and the ballistic limit velocity prediction as a function of the model parameters. The PVR curve incorporates the variability of the model input parameters and describes the probability of penetration of the plate as a function of impact velocity.
stat
Bayesian model selection for unsupervised image deconvolution with structured Gaussian priors
This paper considers the objective comparison of stochastic models to solve inverse problems, more specifically image restoration. Most often, model comparison is addressed in a supervised manner, that can be time-consuming and partly arbitrary. Here we adopt an unsupervised Bayesian approach and objectively compare the models based on their posterior probabilities, directly from the data without ground truth available. The probabilities depend on the marginal likelihood or "evidence" of the models and we resort to the Chib approach including a Gibbs sampler. We focus on the family of Gaussian models with circulant covariances and unknown hyperparameters, and compare different types of covariance matrices for the image and noise.
stat
Infectious Disease Forecasting for Public Health
Forecasting transmission of infectious diseases, especially for vector-borne diseases, poses unique challenges for researchers. Behaviors of and interactions between viruses, vectors, hosts, and the environment each play a part in determining the transmission of a disease. Public health surveillance systems and other sources provide valuable data that can be used to accurately forecast disease incidence. However, many aspects of common infectious disease surveillance data are imperfect: cases may be reported with a delay or in some cases not at all, data on vectors may not be available, and case data may not be available at high geographical or temporal resolution. In the face of these challenges, researchers must make assumptions to either account for these underlying processes in a mechanistic model or to justify their exclusion altogether in a statistical model. Whether a model is mechanistic or statistical, researchers should evaluate their model using accepted best practices from the emerging field of infectious disease forecasting while adopting conventions from other fields that have been developing forecasting methods for decades. Accounting for assumptions and properly evaluating models will allow researchers to generate forecasts that have the potential to provide valuable insights for public health officials. This chapter provides a background to the practice of forecasting in general, discusses the biological and statistical models used for infectious disease forecasting, presents technical details about making and evaluating forecasting models, and explores the issues in communicating forecasting results in a public health context.
stat
Dimension Independent Generalization Error by Stochastic Gradient Descent
One classical canon of statistics is that large models are prone to overfitting, and model selection procedures are necessary for high dimensional data. However, many overparameterized models, such as neural networks, perform very well in practice, although they are often trained with simple online methods and regularization. The empirical success of overparameterized models, which is often known as benign overfitting, motivates us to have a new look at the statistical generalization theory for online optimization. In particular, we present a general theory on the generalization error of stochastic gradient descent (SGD) solutions for both convex and locally convex loss functions. We further discuss data and model conditions that lead to a ``low effective dimension". Under these conditions, we show that the generalization error either does not depend on the ambient dimension $p$ or depends on $p$ via a poly-logarithmic factor. We also demonstrate that in several widely used statistical models, the ``low effective dimension'' arises naturally in overparameterized settings. The studied statistical applications include both convex models such as linear regression and logistic regression and non-convex models such as $M$-estimator and two-layer neural networks.
stat
Partial Separability and Functional Graphical Models for Multivariate Gaussian Processes
The covariance structure of multivariate functional data can be highly complex, especially if the multivariate dimension is large, making extension of statistical methods for standard multivariate data to the functional data setting quite challenging. For example, Gaussian graphical models have recently been extended to the setting of multivariate functional data by applying multivariate methods to the coefficients of truncated basis expansions. However, a key difficulty compared to multivariate data is that the covariance operator is compact, and thus not invertible. The methodology in this paper addresses the general problem of covariance modeling for multivariate functional data, and functional Gaussian graphical models in particular. As a first step, a new notion of separability for multivariate functional data is proposed, termed partial separability, leading to a novel Karhunen-Lo\`eve-type expansion for such data. Next, the partial separability structure is shown to be particularly useful in order to provide a well-defined Gaussian graphical model that can be identified with a sequence of finite-dimensional graphical models, each of fixed dimension. This motivates a simple and efficient estimation procedure through application of the joint graphical lasso. Empirical performance of the method for graphical model estimation is assessed through simulation and analysis of functional brain connectivity during a motor task.
stat
Instrumental Variable Estimation of Marginal Structural Mean Models for Time-Varying Treatment
Robins 1997 introduced marginal structural models (MSMs), a general class of counterfactual models for the joint effects of time-varying treatment regimes in complex longitudinal studies subject to time-varying confounding. In his work, identification of MSM parameters is established under a sequential randomization assumption (SRA), which rules out unmeasured confounding of treatment assignment over time. We consider sufficient conditions for identification of the parameters of a subclass, Marginal Structural Mean Models (MSMMs), when sequential randomization fails to hold due to unmeasured confounding, using instead a time-varying instrumental variable. Our identification conditions require that no unobserved confounder predicts compliance type for the time-varying treatment. We describe a simple weighted estimator and examine its finite-sample properties in a simulation study. We apply the proposed estimator to examine the effect of delivery hospital on neonatal survival probability.
stat
Multivariate Time-Between-Events Monitoring -- An overview and some (overlooked) underlying complexities
We review methods for monitoring multivariate time-between-events (TBE) data. We present some underlying complexities that have been overlooked in the literature. It is helpful to classify multivariate TBE monitoring applications into two fundamentally different scenarios. One scenario involves monitoring individual vectors of TBE data. The other involves the monitoring of several, possibly correlated, temporal point processes in which events could occur at different rates. We discuss performance measures and advise the use of time-between-signal based metrics for the design and comparison of methods. We re-evaluate an existing multivariate TBE monitoring method, offer some advice and some directions for future research.
stat
Algorithms for finding generalized minimum aberration designs
Statistical design of experiments is widely used in scientific and industrial investigations. A generalized minimum aberration (GMA) orthogonal array is optimum under the well-established, so-called GMA criterion, and such an array can extract as much information as possible at a fixed cost. Finding GMA arrays is an open (yet fundamental) problem in design of experiments because constructing such arrays becomes intractable as the number of runs and factors increase. We develop two directed enumeration algorithms that call the integer programming with isomorphism pruning algorithm of Margot (2007) for the purpose of finding GMA arrays. Our results include 16 GMA arrays that were not previously in the literature, along with documentation of the efficiencies that made the required calculations possible within a reasonable budget of computer time. We also validate heuristic algorithms against a GMA array catalog, by showing that they quickly output near GMA arrays, and then use the heuristics to find near GMA arrays when enumeration is computationally burdensome.
stat
Distribution-Free Pointwise Adjusted P-Values for Functional Hypotheses
Graphical tests assess whether a function of interest departs from an envelope of functions generated under a simulated null distribution. This approach originated in spatial statistics, but has recently gained some popularity in functional data analysis. Whereas such envelope tests examine deviation from a functional null distribution in an omnibus sense, in some applications we wish to do more: to obtain p-values at each point in the function domain, adjusted to control the familywise error rate. Here we derive pointwise adjusted p-values based on envelope tests, and relate these to previous approaches for functional data under distributional assumptions. We then present two alternative distribution-free p-value adjustments that offer greater power. The methods are illustrated with an analysis of age-varying sex effects on cortical thickness in the human brain.
stat
The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
Modern deep learning models employ considerably more parameters than required to fit the training data. Whereas conventional statistical wisdom suggests such models should drastically overfit, in practice these models generalize remarkably well. An emerging paradigm for describing this unexpected behavior is in terms of a \emph{double descent} curve, in which increasing a model's capacity causes its test error to first decrease, then increase to a maximum near the interpolation threshold, and then decrease again in the overparameterized regime. Recent efforts to explain this phenomenon theoretically have focused on simple settings, such as linear regression or kernel regression with unstructured random features, which we argue are too coarse to reveal important nuances of actual neural networks. We provide a precise high-dimensional asymptotic analysis of generalization under kernel regression with the Neural Tangent Kernel, which characterizes the behavior of wide neural networks optimized with gradient descent. Our results reveal that the test error has non-monotonic behavior deep in the overparameterized regime and can even exhibit additional peaks and descents when the number of parameters scales quadratically with the dataset size.
stat
Causal isotonic regression
In observational studies, potential confounders may distort the causal relationship between an exposure and an outcome. However, under some conditions, a causal dose-response curve can be recovered using the G-computation formula. Most classical methods for estimating such curves when the exposure is continuous rely on restrictive parametric assumptions, which carry significant risk of model misspecification. Nonparametric estimation in this context is challenging because in a nonparametric model these curves cannot be estimated at regular rates. Many available nonparametric estimators are sensitive to the selection of certain tuning parameters, and performing valid inference with such estimators can be difficult. In this work, we propose a nonparametric estimator of a causal dose-response curve known to be monotone. We show that our proposed estimation procedure generalizes the classical least-squares isotonic regression estimator of a monotone regression function. Specifically, it does not involve tuning parameters, and is invariant to strictly monotone transformations of the exposure variable. We describe theoretical properties of our proposed estimator, including its irregular limit distribution and the potential for doubly-robust inference. Furthermore, we illustrate its performance via numerical studies, and use it to assess the relationship between BMI and immune response in HIV vaccine trials.
stat
Bayesian Survival Analysis Using the rstanarm R Package
Survival data is encountered in a range of disciplines, most notably health and medical research. Although Bayesian approaches to the analysis of survival data can provide a number of benefits, they are less widely used than classical (e.g. likelihood-based) approaches. This may be in part due to a relative absence of user-friendly implementations of Bayesian survival models. In this article we describe how the rstanarm R package can be used to fit a wide range of Bayesian survival models. The rstanarm package facilitates Bayesian regression modelling by providing a user-friendly interface (users specify their model using customary R formula syntax and data frames) and using the Stan software (a C++ library for Bayesian inference) for the back-end estimation. The suite of models that can be estimated using rstanarm is broad and includes generalised linear models (GLMs), generalised linear mixed models (GLMMs), generalised additive models (GAMs) and more. In this article we focus only on the survival modelling functionality. This includes standard parametric (exponential, Weibull, Gompertz) and flexible parametric (spline-based) hazard models, as well as standard parametric accelerated failure time (AFT) models. All types of censoring (left, right, interval) are allowed, as is delayed entry (left truncation), time-varying covariates, time-varying effects, and frailty effects. We demonstrate the functionality through worked examples. We anticipate these implementations will increase the uptake of Bayesian survival analysis in applied research.
stat
Deciding with Judgment
A decision maker starts from a judgmental decision and moves to the closest boundary of the confidence interval. This statistical decision rule is admissible and does not perform worse than the judgmental decision with a probability equal to the confidence level, which is interpreted as a coefficient of statistical risk aversion. The confidence level is related to the decision maker's aversion to uncertainty and can be elicited with laboratory experiments using urns a la Ellsberg. The decision rule is applied to a problem of asset allocation for an investor whose judgmental decision is to keep all her wealth in cash.
stat
Statistical Inference for Qualitative Interactions with Applications to Precision Medicine and Differential Network Analysis
Qualitative interactions occur when a treatment effect or measure of association varies in sign by sub-population. Of particular interest in many biomedical settings are absence/presence qualitative interactions, which occur when an effect is present in one sub-population but absent in another. Absence/presence interactions arise in emerging applications in precision medicine, where the objective is to identify a set of predictive biomarkers that have prognostic value for clinical outcomes in some sub-population but not others. They also arise naturally in gene regulatory network inference, where the goal is to identify differences in networks corresponding to diseased and healthy individuals, or to different subtypes of disease; such differences lead to identification of network-based biomarkers for diseases. In this paper, we argue that while the absence/presence hypothesis is important, developing a statistical test for this hypothesis is an intractable problem. To overcome this challenge, we approximate the problem in a novel inference framework. In particular, we propose to make inferences about absence/presence interactions by quantifying the relative difference in effect size, reasoning that when the relative difference is large, an absence/presence interaction occurs. The proposed methodology is illustrated through a simulation study as well as an analysis of breast cancer data from the Cancer Genome Atlas.
stat
Large-data determinantal clustering
Determinantal consensus clustering is a promising and attractive alternative to partitioning about medoids and k-means for ensemble clustering. Based on a determinantal point process or DPP sampling, it ensures that subsets of similar points are less likely to be selected as centroids. It favors more diverse subsets of points. The sampling algorithm of the determinantal point process requires the eigendecomposition of a Gram matrix. This becomes computationally intensive when the data size is very large. This is particularly an issue in consensus clustering, where a given clustering algorithm is run several times in order to produce a final consolidated clustering. We propose two efficient alternatives to carry out determinantal consensus clustering on large datasets. They consist in DPP sampling based on sparse and small kernel matrices whose eigenvalue distributions are close to that of the original Gram matrix.
stat
Inference after black box selection
We consider the problem of inference for parameters selected to report only after some algorithm, the canonical example being inference for model parameters after a model selection procedure. The conditional correction for selection requires knowledge of how the selection is affected by changes in the underlying data, and current research explicitly describes this selection. In this work, we assume 1) we have in silico access to the selection algorithm and 2) for parameters of interest, the data input into the algorithm satisfies (pre-selection) a central limit theorem jointly with an estimator of our parameter of interest. Under these assumptions, we recast the problem into a statistical learning problem which can be fit with off-the-shelf models for binary regression. The feature points in this problem are set by the user, opening up the possibility of active learning methods for computationally expensive selection algorithms. We consider two examples previously out of reach of this conditional approach: stability selection and multiple cross-validation.
stat
Fragmentation Coagulation Based Mixed Membership Stochastic Blockmodel
The Mixed-Membership Stochastic Blockmodel~(MMSB) is proposed as one of the state-of-the-art Bayesian relational methods suitable for learning the complex hidden structure underlying the network data. However, the current formulation of MMSB suffers from the following two issues: (1), the prior information~(e.g. entities' community structural information) can not be well embedded in the modelling; (2), community evolution can not be well described in the literature. Therefore, we propose a non-parametric fragmentation coagulation based Mixed Membership Stochastic Blockmodel (fcMMSB). Our model performs entity-based clustering to capture the community information for entities and linkage-based clustering to derive the group information for links simultaneously. Besides, the proposed model infers the network structure and models community evolution, manifested by appearances and disappearances of communities, using the discrete fragmentation coagulation process (DFCP). By integrating the community structure with the group compatibility matrix we derive a generalized version of MMSB. An efficient Gibbs sampling scheme with Polya Gamma (PG) approach is implemented for posterior inference. We validate our model on synthetic and real world data.
stat
Lung Cancer Detection and Classification based on Image Processing and Statistical Learning
Lung cancer is one of the death threatening diseases among human beings. Early and accurate detection of lung cancer can increase the survival rate from lung cancer. Computed Tomography (CT) images are commonly used for detecting the lung cancer.Using a data set of thousands of high-resolution lung scans collected from Kaggle competition [1], we will develop algorithms that accurately determine in the lungs are cancerous or not. The proposed system promises better result than the existing systems, which would be beneficial for the radiologist for the accurate and early detection of cancer. The method has been tested on 198 slices of CT images of various stages of cancer obtained from Kaggle dataset[1] and is found satisfactory results. The accuracy of the proposed method in this dataset is 72.2%
stat
Inference for Individual Mediation Effects and Interventional Effects in Sparse High-Dimensional Causal Graphical Models
We consider the problem of identifying intermediate variables (or mediators) that regulate the effect of a treatment on a response variable. While there has been significant research on this classical topic, little work has been done when the set of potential mediators is high-dimensional (HD). A further complication arises when these mediators are interrelated (with unknown dependencies). In particular, we assume that the causal structure of the treatment, the confounders, the potential mediators and the response is a (possibly unknown) directed acyclic graph (DAG). HD DAG models have previously been used for the estimation of causal effects from observational data. In particular, methods called IDA and joint-IDA have been developed for estimating the effects of single and multiple simultaneous interventions, respectively. In this paper, we propose an IDA-type method called MIDA for estimating so-called individual mediation effects from HD observational data. Although IDA and joint-IDA estimators have been shown to be consistent in certain sparse HD settings, their asymptotic properties such as convergence in distribution and inferential tools in such settings have remained unknown. In this paper, we prove HD consistency of MIDA for linear structural equation models with sub-Gaussian errors. More importantly, we derive distributional convergence results for MIDA in similar HD settings, which are applicable to IDA and joint-IDA estimators as well. To our knowledge, these are the first such distributional convergence results facilitating inference for IDA-type estimators. These are built on our novel theoretical results regarding uniform bounds for linear regression estimators over varying subsets of HD covariates which may be of independent interest. Finally, we empirically validate our asymptotic theory for MIDA and demonstrate its usefulness via simulations and a real data application.
stat
Minimizing Negative Transfer of Knowledge in Multivariate Gaussian Processes: A Scalable and Regularized Approach
Recently there has been an increasing interest in the multivariate Gaussian process (MGP) which extends the Gaussian process (GP) to deal with multiple outputs. One approach to construct the MGP and account for non-trivial commonalities amongst outputs employs a convolution process (CP). The CP is based on the idea of sharing latent functions across several convolutions. Despite the elegance of the CP construction, it provides new challenges that need yet to be tackled. First, even with a moderate number of outputs, model building is extremely prohibitive due to the huge increase in computational demands and number of parameters to be estimated. Second, the negative transfer of knowledge may occur when some outputs do not share commonalities. In this paper we address these issues. We propose a regularized pairwise modeling approach for the MGP established using CP. The key feature of our approach is to distribute the estimation of the full multivariate model into a group of bivariate GPs which are individually built. Interestingly pairwise modeling turns out to possess unique characteristics, which allows us to tackle the challenge of negative transfer through penalizing the latent function that facilitates information sharing in each bivariate model. Predictions are then made through combining predictions from the bivariate models within a Bayesian framework. The proposed method has excellent scalability when the number of outputs is large and minimizes the negative transfer of knowledge between uncorrelated outputs. Statistical guarantees for the proposed method are studied and its advantageous features are demonstrated through numerical studies.
stat
On application of a response propensity model to estimation from web samples
Increasing nonresponse rates and the cost of data collection are two pressing problems encountered in traditional probability surveys. The proliferation of inexpensive data from web surveys stimulates interest in statistical techniques for valid inferences from web samples. We consider estimation of population and domain means in the two-sample setup, where the web sample contains variables of interest and covariates that are shared with an auxiliary probability survey sample. First, we propose an estimator of population mean, based on the estimated propensity of response to a web survey. This makes inferences from web samples that are similar to well-established techniques used for observational studies and missing data problems. Second, we propose an 'implicit' logistic regression for estimating parameters of the web response model in the two-sample setup. Implicit logistic regression uses selection probabilities, nominally defined for web sample units, and the size of the hypothetic population of responders to a web survey. A simulation study confirms the validity of implicit logistic regression and its higher efficiency comparing to alternative estimators of web response propensity.
stat
A feature-based framework for detecting technical outliers in water-quality data from in situ sensors
Outliers due to technical errors in water-quality data from in situ sensors can reduce data quality and have a direct impact on inference drawn from subsequent data analysis. However, outlier detection through manual monitoring is unfeasible given the volume and velocity of data the sensors produce. Here, we proposed an automated framework that provides early detection of outliers in water-quality data from in situ sensors caused by technical issues.The framework was used first to identify the data features that differentiate outlying instances from typical behaviours. Then statistical transformations were applied to make the outlying instances stand out in transformed data space. Unsupervised outlier scoring techniques were then applied to the transformed data space and an approach based on extreme value theory was used to calculate a threshold for each potential outlier. Using two data sets obtained from in situ sensors in rivers flowing into the Great Barrier Reef lagoon, Australia, we showed that the proposed framework successfully identified outliers involving abrupt changes in turbidity, conductivity and river level, including sudden spikes, sudden isolated drops and level shifts, while maintaining very low false detection rates. We implemented this framework in the open source R package oddwater.
stat
An Evaluation of Bounding Approaches for Generalization
Statisticians have recently developed propensity score methods to improve generalizations from randomized experiments that do not employ random sampling. However, these methods typically rely on assumptions whose plausibility may be questionable in practice. In this article, we introduce and discuss bounding, an approach that is based on alternative assumptions that may be more plausible in a given study. The bounding framework nonparametrically estimates population parameters using a range of plausible values that are consistent with the observed characteristics of the data. We illustrate how the bounds can be tightened using three approaches: imposing an alternative assumption based on monotonicity, redefining the population of inference, and using propensity score stratification. Using the results from two simulation studies, we examine the conditions under which bounds for the population parameter are tightened. We conclude with an application of bounding to SimCalc, a cluster randomized trial that evaluated the effectiveness of a technology aid on mathematics achievement.
stat
Asymptotically Optimal Information-Directed Sampling
We introduce a simple and efficient algorithm for stochastic linear bandits with finitely many actions that is asymptotically optimal and worst-case rate optimal in finite time. The approach is based on the frequentist information-directed sampling (IDS) framework, with a surrogate for the information gain that is informed by the optimization problem that defines the asymptotic lower bound. Our analysis sheds light on how IDS balances the trade-off between regret and information. Moreover, we uncover a surprising connection between the recently proposed primal-dual methods and the Bayesian IDS algorithm. We demonstrate empirically that IDS is competitive with UCB in finite-time, and can be significantly better in the asymptotic regime.
stat
Out of Distribution Generalization in Machine Learning
Machine learning has achieved tremendous success in a variety of domains in recent years. However, a lot of these success stories have been in places where the training and the testing distributions are extremely similar to each other. In everyday situations when models are tested in slightly different data than they were trained on, ML algorithms can fail spectacularly. This research attempts to formally define this problem, what sets of assumptions are reasonable to make in our data and what kind of guarantees we hope to obtain from them. Then, we focus on a certain class of out of distribution problems, their assumptions, and introduce simple algorithms that follow from these assumptions that are able to provide more reliable generalization. A central topic in the thesis is the strong link between discovering the causal structure of the data, finding features that are reliable (when using them to predict) regardless of their context, and out of distribution generalization.
stat
Recovery of sparse linear classifiers from mixture of responses
In the problem of learning a mixture of linear classifiers, the aim is to learn a collection of hyperplanes from a sequence of binary responses. Each response is a result of querying with a vector and indicates the side of a randomly chosen hyperplane from the collection the query vector belongs to. This model provides a rich representation of heterogeneous data with categorical labels and has only been studied in some special settings. We look at a hitherto unstudied problem of query complexity upper bound of recovering all the hyperplanes, especially for the case when the hyperplanes are sparse. This setting is a natural generalization of the extreme quantization problem known as 1-bit compressed sensing. Suppose we have a set of $\ell$ unknown $k$-sparse vectors. We can query the set with another vector $\boldsymbol{a}$, to obtain the sign of the inner product of $\boldsymbol{a}$ and a randomly chosen vector from the $\ell$-set. How many queries are sufficient to identify all the $\ell$ unknown vectors? This question is significantly more challenging than both the basic 1-bit compressed sensing problem (i.e., $\ell=1$ case) and the analogous regression problem (where the value instead of the sign is provided). We provide rigorous query complexity results (with efficient algorithms) for this problem.
stat
Judging the Judges: A General Framework for Evaluating the Performance of International Sports Judges
The monitoring of judges and referees in sports has become an important topic due to the increasing media exposure of international sporting events and the large monetary sums involved. In this article, we present a method to assess the accuracy of sports judges and estimate their bias. Our method is broadly applicable to all sports where panels of judges evaluate athletic performances on a finite scale. We analyze judging scores from eight different sports with comparable judging systems: diving, dressage, figure skating, freestyle skiing (aerials), freestyle snowboard (halfpipe, slopestyle), gymnastics, ski jumping and synchronized swimming. With the notable exception of dressage, we identify, for each aforementioned sport, a general and accurate pattern of the intrinsic judging error as a function of the performance level of the athlete. This intrinsic judging inaccuracy is heteroscedastic and can be approximated by a quadratic curve, indicating increased consensus among judges towards the best athletes. Using this observation, the framework developed to assess the performance of international gymnastics judges is applicable to all these sports: we can evaluate the performance of judges compared to their peers and distinguish cheating from unintentional misjudging. Our analysis also leads to valuable insights about the judging practices of the sports under consideration. In particular, it reveals a systemic judging problem in dressage, where judges disagree on what constitutes a good performance.
stat
The e-value: A Fully Bayesian Significance Measure for Precise Statistical Hypotheses and its Research Program
This article gives a survey of the e-value, a statistical significance measure a.k.a. the evidence rendered by observational data, X, in support of a statistical hypothesis, H, or, the other way around, the epistemic value of H given X. The $e$-value and the accompanying FBST, the Full Bayesian Significance Test, constitute the core of a research program that was started at IME-USP, is being developed by over 20 researchers worldwide, and has, so far, been referenced by over 200 publications. The e-value and the FBST comply with the best principles of Bayesian inference, including the likelihood principle, complete invariance, asymptotic consistency, etc. Furthermore, they exhibit powerful logic or algebraic properties in situations where one needs to compare or compose distinct hypotheses that can be formulated either in the same or in different statistical models. Moreover, they effortlessly accommodate the case of sharp or precise hypotheses, a situation where alternative methods often require ad hoc and convoluted procedures. Finally, the FBST has outstanding robustness and reliability characteristics, outperforming traditional tests of hypotheses in many practical applications of statistical modeling and operations research.
stat
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Universal probabilistic programming systems (PPSs) provide a powerful framework for specifying rich probabilistic models. They further attempt to automate the process of drawing inferences from these models, but doing this successfully is severely hampered by the wide range of non--standard models they can express. As a result, although one can specify complex models in a universal PPS, the provided inference engines often fall far short of what is required. In particular, we show that they produce surprisingly unsatisfactory performance for models where the support varies between executions, often doing no better than importance sampling from the prior. To address this, we introduce a new inference framework: Divide, Conquer, and Combine, which remains efficient for such models, and show how it can be implemented as an automated and generic PPS inference engine. We empirically demonstrate substantial performance improvements over existing approaches on three examples.
stat
A linear time method for the detection of point and collective anomalies
The challenge of efficiently identifying anomalies in data sequences is an important statistical problem that now arises in many applications. Whilst there has been substantial work aimed at making statistical analyses robust to outliers, or point anomalies, there has been much less work on detecting anomalous segments, or collective anomalies, particularly in those settings where point anomalies might also occur. In this article, we introduce Collective And Point Anomalies (CAPA), a computationally efficient approach that is suitable when collective anomalies are characterised by either a change in mean, variance, or both, and distinguishes them from point anomalies. Theoretical results establish the consistency of CAPA at detecting collective anomalies and, as a by-product, the consistency of a popular penalised cost based change in mean and variance detection method. Empirical results show that CAPA has close to linear computational cost as well as being more accurate at detecting and locating collective anomalies than other approaches. We demonstrate the utility of CAPA through its ability to detect exoplanets from light curve data from the Kepler telescope.
stat
Coupling the reduced-order model and the generative model for an importance sampling estimator
In this work, we develop an importance sampling estimator by coupling the reduced-order model and the generative model in a problem setting of uncertainty quantification. The target is to estimate the probability that the quantity of interest (QoI) in a complex system is beyond a given threshold. To avoid the prohibitive cost of sampling a large scale system, the reduced-order model is usually considered for a trade-off between efficiency and accuracy. However, the Monte Carlo estimator given by the reduced-order model is biased due to the error from dimension reduction. To correct the bias, we still need to sample the fine model. An effective technique to reduce the variance reduction is importance sampling, where we employ the generative model to estimate the distribution of the data from the reduced-order model and use it for the change of measure in the importance sampling estimator. To compensate the approximation errors of the reduced-order model, more data that induce a slightly smaller QoI than the threshold need to be included into the training set. Although the amount of these data can be controlled by a posterior error estimate, redundant data, which may outnumber the effective data, will be kept due to the epistemic uncertainty. To deal with this issue, we introduce a weighted empirical distribution to process the data from the reduced-order model. The generative model is then trained by minimizing the cross entropy between it and the weighted empirical distribution. We also introduce a penalty term into the objective function to deal with the overfitting for more robustness. Numerical results are presented to demonstrate the effectiveness of the proposed methodology.
stat
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
Many machine learning models require a training procedure based on running stochastic gradient descent. A key element for the efficiency of those algorithms is the choice of the learning rate schedule. While finding good learning rates schedules using Bayesian optimisation has been tackled by several authors, adapting it dynamically in a data-driven way is an open question. This is of high practical importance to users that need to train a single, expensive model. To tackle this problem, we introduce an original probabilistic model for traces of optimisers, based on latent Gaussian processes and an auto-/regressive formulation, that flexibly adjusts to abrupt changes of behaviours induced by new learning rate values. As illustrated, this model is well-suited to tackle a set of problems: first, for the on-line adaptation of the learning rate for a cold-started run; then, for tuning the schedule for a set of similar tasks (in a classical BO setup), as well as warm-starting it for a new task.
stat
A Causal Inference Approach to Measure the Vulnerability of Urban Metro Systems
Transit operators need vulnerability measures to understand the level of service degradation under disruptions. This paper contributes to the literature with a novel causal inference approach for estimating station-level vulnerability in metro systems. The empirical analysis is based on large-scale data on historical incidents and population-level passenger demand. This analysis thus obviates the need for assumptions made by previous studies on human behaviour and disruption scenarios. We develop four empirical vulnerability metrics based on the causal impact of disruptions on travel demand, average travel speed and passenger flow distribution. Specifically, the proposed metrics based on the irregularity in passenger flow distribution extends the scope of vulnerability measurement to the entire trip distribution, instead of just analysing the disruption impact on the entry or exit demand (that is, moments of the trip distribution). The unbiased estimates of disruption impact are obtained by adopting a propensity score matching method, which adjusts for the confounding biases caused by non-random occurrence of disruptions. An application of the proposed framework to the London Underground indicates that the vulnerability of a metro station depends on the location, topology, and other characteristics. We find that, in 2013, central London stations are more vulnerable in terms of travel demand loss. However, the loss of average travel speed and irregularity in relative passenger flows reveal that passengers from outer London stations suffer from longer individual delays due to lack of alternative routes.
stat
Concept Tree: High-Level Representation of Variables for More Interpretable Surrogate Decision Trees
Interpretable surrogates of black-box predictors trained on high-dimensional tabular datasets can struggle to generate comprehensible explanations in the presence of correlated variables. We propose a model-agnostic interpretable surrogate that provides global and local explanations of black-box classifiers to address this issue. We introduce the idea of concepts as intuitive groupings of variables that are either defined by a domain expert or automatically discovered using correlation coefficients. Concepts are embedded in a surrogate decision tree to enhance its comprehensibility. First experiments on FRED-MD, a macroeconomic database with 134 variables, show improvement in human-interpretability while accuracy and fidelity of the surrogate model are preserved.
stat
Heterogeneous causal effects with imperfect compliance: a novel Bayesian machine learning approach
This paper introduces an innovative Bayesian machine learning algorithm to draw interpretable inference on heterogeneous causal effects in the presence of imperfect compliance (e.g., under an irregular assignment mechanism). We show, through Monte Carlo simulations, that the proposed Bayesian Causal Forest with Instrumental Variable (BCF-IV) methodology outperforms other machine learning techniques tailored for causal inference in discovering and estimating the heterogeneous causal effects. BCF-IV sheds a light on the heterogeneity of causal effects in instrumental variable scenarios and, in turn, provides the policy-makers with a relevant tool for targeted policies. Its empirical application evaluates the effects of additional funding on students' performances. The results indicate that BCF-IV could be used to enhance the effectiveness of school funding on students' performance. Code is available at https://github.com/fbargaglistoffi/BCF-IV.
stat
Iterated Feature Screening based on Distance Correlation for Ultrahigh-Dimensional Censored Data with Covariates Measurement Error
Feature screening is an important method to reduce the dimension and capture informative variables in ultrahigh-dimensional data analysis. Many methods have been developed for feature screening. These methods, however, are challenged by complex features pertinent to the data collection as well as the nature of the data themselves. Typically, incomplete response caused by right-censoring and covariates measurement error are often accompanying with survival analysis. Even though there are many methods have been proposed for censored data, little work has been available when both incomplete response and measurement error occur simultaneously. In addition, the conventional feature screening methods may fail to detect the truly important covariates which are marginally independent of the response variable due to correlations among covariates. In this paper, we explore this important problem and propose the valid feature screening method in the presence of survival data with measurement error. In addition, we also develop the iteration method to improve the accuracy of selecting all important covariates. Numerical studies are reported to assess the performance of the proposed method. Finally, we implement the proposed method to two different real datasets.
stat
Model-based simultaneous inference for multiple subgroups and multiple endpoints
Various methodological options exist on evaluating differences in both subgroups and the overall population. Most desirable is the simultaneous study of multiple endpoints in several populations. We investigate a newer method using multiple marginal models (mmm) which allows flexible handling of multiple endpoints, including continuous, binary or time-to-event data. This paper explores the performance of mmm in contrast to the standard Bonferroni approach via simulation. Mainly these methods are compared on the basis of their familywise error rate and power under different scenarios, varying in sample size and standard deviation. Additionally, it is shown that the method can deal with overlapping subgroup definitions and different combinations of endpoints may be assumed. The reanalysis of a clinical example shows a practical application.
stat
Confidence intervals with higher accuracy for short and long memory linear processes
In this paper an easy to implement method of stochastically weighing short and long memory linear processes is introduced. The method renders asymptotically exact size confidence intervals for the population mean which are significantly more accurate than their classical counterparts for each fixed sample size $n$. It is illustrated both theoretically and numerically that the randomization framework of this paper produces randomized (asymptotic) pivotal quantities, for the mean, which admit central limit theorems with smaller magnitudes of error as compared to those of their leading classical counterparts. An Edgeworth expansion result for randomly weighted linear processes whose innovations do not necessarily satisfy the Cramer condition, is also established.
stat
Scalable GWR: A linear-time algorithm for large-scale geographically weighted regression with polynomial kernels
Although a number of studies have developed fast geographically weighted regression (GWR) algorithms for large samples, none of them has achieved linear-time estimation, which is considered a requisite for big data analysis in machine learning, geostatistics, and related domains. Against this backdrop, this study proposes a scalable GWR (ScaGWR) for large datasets. The key improvement is the calibration of the model through a pre-compression of the matrices and vectors whose size depends on the sample size, prior to the leave-one-out cross-validation, which is the heaviest computational step in conventional GWR. This pre-compression allows us to run the proposed GWR extension so that its computation time increases linearly with the sample size. With this improvement, the ScaGWR can be calibrated with one million observations without parallelization. Moreover, the ScaGWR estimator can be regarded as an empirical Bayesian estimator that is more stable than the conventional GWR estimator. We compare the ScaGWR with the conventional GWR in terms of estimation accuracy and computational efficiency using a Monte Carlo simulation. Then, we apply these methods to a US income analysis. The code for ScaGWR is available in the R package scgwr. The code is embedded into C++ code and implemented in another R package, GWmodel.
stat
A projection approach for multiple monotone regression
Shape-constrained inference has wide applicability in bioassay, medicine, economics, risk assessment, and many other fields. Although there has been a large amount of work on monotone-constrained univariate curve estimation, multivariate shape-constrained problems are much more challenging, and fewer advances have been made in this direction. With a focus on monotone regression with multiple predictors, this current work proposes a projection approach to estimate a multiple monotone regression function. An initial unconstrained estimator -- such as a local polynomial estimator or spline estimator -- is first obtained, which is then projected onto the shape-constrained space. A shape-constrained estimate (with multiple predictors) is obtained by sequentially projecting an (adjusted) initial estimator along each univariate direction. Compared to the initial unconstrained estimator, the projection estimate results in a reduction of estimation error in terms of both $L^p$ ($p\geq 1$) distance and supremum distance. We also derive the asymptotic distribution of the projection estimate. Simple computational algorithms are available for implementing the projection in both the unidimensional and higher dimensional cases. Our work provides a simple recipe for practitioners to use in real applications, and is illustrated with a joint-action example from environmental toxicology.
stat
Conformal Inference of Counterfactuals and Individual Treatment Effects
Evaluating treatment effect heterogeneity widely informs treatment decision making. At the moment, much emphasis is placed on the estimation of the conditional average treatment effect via flexible machine learning algorithms. While these methods enjoy some theoretical appeal in terms of consistency and convergence rates, they generally perform poorly in terms of uncertainty quantification. This is troubling since assessing risk is crucial for reliable decision-making in sensitive and uncertain environments. In this work, we propose a conformal inference-based approach that can produce reliable interval estimates for counterfactuals and individual treatment effects under the potential outcome framework. For completely randomized or stratified randomized experiments with perfect compliance, the intervals have guaranteed average coverage in finite samples regardless of the unknown data generating mechanism. For randomized experiments with ignorable compliance and general observational studies obeying the strong ignorability assumption, the intervals satisfy a doubly robust property which states the following: the average coverage is approximately controlled if either the propensity score or the conditional quantiles of potential outcomes can be estimated accurately. Numerical studies on both synthetic and real datasets empirically demonstrate that existing methods suffer from a significant coverage deficit even in simple models. In contrast, our methods achieve the desired coverage with reasonably short intervals.
stat
Conditional Kernel Density Estimation Considering Autocorrelation for Renewable Energy Probabilistic Modeling
Renewable energy is essential for energy security and global warming mitigation. However, power generation from renewable energy sources is uncertain due to volatile weather conditions and complex equipment operations. To improve equipment's operation efficiency, it is important to understand and characterize the uncertainty in renewable power generation. In this paper, we proposed a conditional kernel density estimation method to model the distribution of equipment's power output given any weather conditions. It explicitly accounts for the temporal dependence in the data stream and uses an iterative procedure to reduce the bias in kernel density estimation. Compared with existing literature, our approach is especially useful for the purposes of equipment condition monitoring or short-term renewable energy forecasting, where the data dependence plays a more significant role. We demonstrate our method and compare it with alternatives through real applications.
stat
Prediction & Model Evaluation for Space-Time Data
Evaluation metrics for prediction error, model selection and model averaging on space-time data are understudied and poorly understood. The absence of independent replication makes prediction ambiguous as a concept and renders evaluation procedures developed for independent data inappropriate for most space-time prediction problems. Motivated by air pollution data collected during California wildfires in 2008, this manuscript attempts a formalization of the true prediction error associated with spatial interpolation. We investigate a variety of cross-validation (CV) procedures employing both simulations and case studies to provide insight into the nature of the estimand targeted by alternative data partition strategies. Consistent with recent best practice, we find that location-based cross-validation is appropriate for estimating spatial interpolation error as in our analysis of the California wildfire data. Interestingly, commonly held notions of bias-variance trade-off of CV fold size do not trivially apply to dependent data, and we recommend leave-one-location-out (LOLO) CV as the preferred prediction error metric for spatial interpolation.
stat
Combining biomarker and self-reported dietary intake data: a review of the state of the art and an exposition of concepts
Classical approaches to assessing dietary intake are associated with measurement error. In an effort to address inherent measurement error in dietary self-reported data there is increased interest in the use of dietary biomarkers as objective measures of intake. Furthermore, there is a growing consensus of the need to combine dietary biomarker data with self-reported data. A review of state of the art techniques employed when combining biomarker and self-reported data is conducted. Two predominant methods, the calibration method and the method of triads, emerge as relevant techniques used when combining biomarker and self-reported data to account for measurement errors in dietary intake assessment. Both methods crucially assume measurement error independence. To expose and understand the performance of these methods in a range of realistic settings, their underpinning statistical concepts are unified and delineated, and thorough simulation studies conducted. Results show that violation of the methods' assumptions negatively impacts resulting inference but that this impact is mitigated when the variation of the biomarker around the true intake is small. Thus there is much scope for the further development of biomarkers and models in tandem to achieve the ultimate goal of accurately assessing dietary intake.
stat