Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
3572813
·
1 Parent(s): a499813

Update files from the datasets library (from 1.0.2)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.2

dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"default": {"description": "Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The\n dataset is collected from English examinations in China, which are designed for middle school and high school students.\nThe dataset can be served as the training and test sets for machine comprehension.\n\n", "citation": "@article{lai2017large,\n title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},\n author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},\n journal={arXiv preprint arXiv:1704.04683},\n year={2017}\n}\n", "homepage": "http://www.cs.cmu.edu/~glai1/data/race/", "license": "", "features": {"article": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "race", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 6935145, "num_examples": 3498, "dataset_name": "race"}, "train": {"name": "train", "num_bytes": 125280697, "num_examples": 62445, "dataset_name": "race"}, "validation": {"name": "validation", "num_bytes": 6832070, "num_examples": 3451, "dataset_name": "race"}}, "download_checksums": {"http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz": {"num_bytes": 88627200, "checksum": "98b54b7e656bc9e2e434f99f07863a83f89647a1f4c9428a041c3a4c51db6787"}}, "download_size": 88627200, "dataset_size": 139047912, "size_in_bytes": 227675112}}
 
1
+ {"high": {"description": "Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The\n dataset is collected from English examinations in China, which are designed for middle school and high school students.\nThe dataset can be served as the training and test sets for machine comprehension.\n\n", "citation": "@article{lai2017large,\n title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},\n author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},\n journal={arXiv preprint arXiv:1704.04683},\n year={2017}\n}\n", "homepage": "http://www.cs.cmu.edu/~glai1/data/race/", "license": "", "features": {"example_id": {"dtype": "string", "id": null, "_type": "Value"}, "article": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "race", "config_name": "high", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 6989121, "num_examples": 3498, "dataset_name": "race"}, "train": {"name": "train", "num_bytes": 126243396, "num_examples": 62445, "dataset_name": "race"}, "validation": {"name": "validation", "num_bytes": 6885287, "num_examples": 3451, "dataset_name": "race"}}, "download_checksums": {"http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz": {"num_bytes": 25443609, "checksum": "b2769cc9fdc5c546a693300eb9a966cec6870bd349fbc44ed5225f8ad33006e5"}}, "download_size": 25443609, "post_processing_size": null, "dataset_size": 140117804, "size_in_bytes": 165561413}, "middle": {"description": "Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The\n dataset is collected from English examinations in China, which are designed for middle school and high school students.\nThe dataset can be served as the training and test sets for machine comprehension.\n\n", "citation": "@article{lai2017large,\n title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},\n author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},\n journal={arXiv preprint arXiv:1704.04683},\n year={2017}\n}\n", "homepage": "http://www.cs.cmu.edu/~glai1/data/race/", "license": "", "features": {"example_id": {"dtype": "string", "id": null, "_type": "Value"}, "article": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "race", "config_name": "middle", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1786297, "num_examples": 1436, "dataset_name": "race"}, "train": {"name": "train", "num_bytes": 31065322, "num_examples": 25421, "dataset_name": "race"}, "validation": {"name": "validation", "num_bytes": 1761937, "num_examples": 1436, "dataset_name": "race"}}, "download_checksums": {"http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz": {"num_bytes": 25443609, "checksum": "b2769cc9fdc5c546a693300eb9a966cec6870bd349fbc44ed5225f8ad33006e5"}}, "download_size": 25443609, "post_processing_size": null, "dataset_size": 34613556, "size_in_bytes": 60057165}, "all": {"description": "Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The\n dataset is collected from English examinations in China, which are designed for middle school and high school students.\nThe dataset can be served as the training and test sets for machine comprehension.\n\n", "citation": "@article{lai2017large,\n title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},\n author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},\n journal={arXiv preprint arXiv:1704.04683},\n year={2017}\n}\n", "homepage": "http://www.cs.cmu.edu/~glai1/data/race/", "license": "", "features": {"example_id": {"dtype": "string", "id": null, "_type": "Value"}, "article": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "race", "config_name": "all", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 8775394, "num_examples": 4934, "dataset_name": "race"}, "train": {"name": "train", "num_bytes": 157308694, "num_examples": 87866, "dataset_name": "race"}, "validation": {"name": "validation", "num_bytes": 8647200, "num_examples": 4887, "dataset_name": "race"}}, "download_checksums": {"http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz": {"num_bytes": 25443609, "checksum": "b2769cc9fdc5c546a693300eb9a966cec6870bd349fbc44ed5225f8ad33006e5"}}, "download_size": 25443609, "post_processing_size": null, "dataset_size": 174731288, "size_in_bytes": 200174897}}
dummy/{0.1.0 → all/0.1.0}/dummy_data.zip RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f23aa67f2655e2757852e90787c98e91bd88dfa8f0663bfe275129a437755a4
3
- size 10762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86b18d4638b1557a5c2360e62cd07877c0475324c6ff47403c8c768ed63afe66
3
+ size 25917
dummy/high/0.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b10107665a293521ceebd7354c8d77e5cd3bb16305c26f16d73630b2844eae9
3
+ size 13484
dummy/middle/0.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88b445588ec0540d6b11d9f0e82773dc48e91562faa64b91f1d7ec5f4a562ca1
3
+ size 16125
race.py CHANGED
@@ -4,11 +4,11 @@ from __future__ import absolute_import, division, print_function
4
 
5
  import json
6
  import os
 
7
 
8
  import datasets
9
 
10
 
11
- # TODO(race): BibTeX citation
12
  _CITATION = """\
13
  @article{lai2017large,
14
  title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
@@ -18,7 +18,6 @@ _CITATION = """\
18
  }
19
  """
20
 
21
- # TODO(race):
22
  _DESCRIPTION = """\
23
  Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The
24
  dataset is collected from English examinations in China, which are designed for middle school and high school students.
@@ -30,19 +29,28 @@ _URL = "http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz"
30
 
31
 
32
  class Race(datasets.GeneratorBasedBuilder):
33
- """TODO(race): Short description of my dataset."""
34
 
35
- # TODO(race): Set up version.
36
  VERSION = datasets.Version("0.1.0")
37
 
 
 
 
 
 
 
 
 
 
 
38
  def _info(self):
39
- # TODO(race): Specifies the datasets.DatasetInfo object
40
  return datasets.DatasetInfo(
41
  # This is the description that will appear on the datasets page.
42
  description=_DESCRIPTION,
43
  # datasets.features.FeatureConnectors
44
  features=datasets.Features(
45
  {
 
46
  "article": datasets.Value("string"),
47
  "answer": datasets.Value("string"),
48
  "question": datasets.Value("string"),
@@ -61,43 +69,36 @@ class Race(datasets.GeneratorBasedBuilder):
61
 
62
  def _split_generators(self, dl_manager):
63
  """Returns SplitGenerators."""
64
- # TODO(race): Downloads the data and defines the splits
65
  # dl_manager is a datasets.download.DownloadManager that can be used to
66
- # download and extract URLs
67
  dl_dir = dl_manager.download_and_extract(_URL)
 
 
 
68
  return [
69
  datasets.SplitGenerator(
70
  name=datasets.Split.TEST,
71
  # These kwargs will be passed to _generate_examples
72
- gen_kwargs={
73
- "files": sorted(os.listdir(os.path.join(dl_dir, "RACE/test/high"))),
74
- "filespath": os.path.join(dl_dir, "RACE/test/high"),
75
- },
76
  ),
77
  datasets.SplitGenerator(
78
  name=datasets.Split.TRAIN,
79
  # These kwargs will be passed to _generate_examples
80
- gen_kwargs={
81
- "files": sorted(os.listdir(os.path.join(dl_dir, "RACE/train/high"))),
82
- "filespath": os.path.join(dl_dir, "RACE/train/high"),
83
- },
84
  ),
85
  datasets.SplitGenerator(
86
  name=datasets.Split.VALIDATION,
87
  # These kwargs will be passed to _generate_examples
88
- gen_kwargs={
89
- "files": sorted(os.listdir(os.path.join(dl_dir, "RACE/dev/high"))),
90
- "filespath": os.path.join(dl_dir, "RACE/dev/high"),
91
- },
92
  ),
93
  ]
94
 
95
- def _generate_examples(self, files, filespath):
96
  """Yields examples."""
97
- # TODO(race): Yields (key, example) tuples from the dataset
98
- for file in files:
99
- filepath = os.path.join(filespath, file)
100
- with open(filepath, encoding="utf-8") as f:
101
  data = json.load(f)
102
  questions = data["questions"]
103
  answers = data["answers"]
@@ -107,6 +108,7 @@ class Race(datasets.GeneratorBasedBuilder):
107
  answer = answers[i]
108
  option = options[i]
109
  yield i, {
 
110
  "article": data["article"],
111
  "question": question,
112
  "answer": answer,
 
4
 
5
  import json
6
  import os
7
+ from pathlib import Path
8
 
9
  import datasets
10
 
11
 
 
12
  _CITATION = """\
13
  @article{lai2017large,
14
  title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
 
18
  }
19
  """
20
 
 
21
  _DESCRIPTION = """\
22
  Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The
23
  dataset is collected from English examinations in China, which are designed for middle school and high school students.
 
29
 
30
 
31
  class Race(datasets.GeneratorBasedBuilder):
32
+ """ReAding Comprehension Dataset From Examination dataset from CMU"""
33
 
 
34
  VERSION = datasets.Version("0.1.0")
35
 
36
+ BUILDER_CONFIGS = [
37
+ datasets.BuilderConfig(name="high", description="Exams designed for high school students", version=VERSION),
38
+ datasets.BuilderConfig(
39
+ name="middle", description="Exams designed for middle school students", version=VERSION
40
+ ),
41
+ datasets.BuilderConfig(
42
+ name="all", description="Exams designed for both high school and middle school students", version=VERSION
43
+ ),
44
+ ]
45
+
46
  def _info(self):
 
47
  return datasets.DatasetInfo(
48
  # This is the description that will appear on the datasets page.
49
  description=_DESCRIPTION,
50
  # datasets.features.FeatureConnectors
51
  features=datasets.Features(
52
  {
53
+ "example_id": datasets.Value("string"),
54
  "article": datasets.Value("string"),
55
  "answer": datasets.Value("string"),
56
  "question": datasets.Value("string"),
 
69
 
70
  def _split_generators(self, dl_manager):
71
  """Returns SplitGenerators."""
72
+ # Downloads the data and defines the splits
73
  # dl_manager is a datasets.download.DownloadManager that can be used to
 
74
  dl_dir = dl_manager.download_and_extract(_URL)
75
+ case = str(self.config.name)
76
+ if case == "all":
77
+ case = ""
78
  return [
79
  datasets.SplitGenerator(
80
  name=datasets.Split.TEST,
81
  # These kwargs will be passed to _generate_examples
82
+ gen_kwargs={"train_test_or_eval": os.path.join(dl_dir, f"RACE/test/{case}")},
 
 
 
83
  ),
84
  datasets.SplitGenerator(
85
  name=datasets.Split.TRAIN,
86
  # These kwargs will be passed to _generate_examples
87
+ gen_kwargs={"train_test_or_eval": os.path.join(dl_dir, f"RACE/train/{case}")},
 
 
 
88
  ),
89
  datasets.SplitGenerator(
90
  name=datasets.Split.VALIDATION,
91
  # These kwargs will be passed to _generate_examples
92
+ gen_kwargs={"train_test_or_eval": os.path.join(dl_dir, f"RACE/dev/{case}")},
 
 
 
93
  ),
94
  ]
95
 
96
+ def _generate_examples(self, train_test_or_eval):
97
  """Yields examples."""
98
+ current_path = Path(train_test_or_eval)
99
+ files_in_dir = [str(f.absolute()) for f in sorted(current_path.glob("**/*.txt"))]
100
+ for file in sorted(files_in_dir):
101
+ with open(file, encoding="utf-8") as f:
102
  data = json.load(f)
103
  questions = data["questions"]
104
  answers = data["answers"]
 
108
  answer = answers[i]
109
  option = options[i]
110
  yield i, {
111
+ "example_id": data["id"],
112
  "article": data["article"],
113
  "question": question,
114
  "answer": answer,