Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
100K - 1M
ArXiv:
License:
Update files from the datasets library (from 1.16.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.16.0
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
languages:
|
3 |
- en
|
4 |
paperswithcode_id: race
|
|
|
1 |
---
|
2 |
+
pretty_name: RACE
|
3 |
languages:
|
4 |
- en
|
5 |
paperswithcode_id: race
|
race.py
CHANGED
@@ -2,8 +2,6 @@
|
|
2 |
|
3 |
|
4 |
import json
|
5 |
-
import os
|
6 |
-
from pathlib import Path
|
7 |
|
8 |
import datasets
|
9 |
|
@@ -70,7 +68,7 @@ class Race(datasets.GeneratorBasedBuilder):
|
|
70 |
"""Returns SplitGenerators."""
|
71 |
# Downloads the data and defines the splits
|
72 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
73 |
-
|
74 |
case = str(self.config.name)
|
75 |
if case == "all":
|
76 |
case = ""
|
@@ -78,27 +76,25 @@ class Race(datasets.GeneratorBasedBuilder):
|
|
78 |
datasets.SplitGenerator(
|
79 |
name=datasets.Split.TEST,
|
80 |
# These kwargs will be passed to _generate_examples
|
81 |
-
gen_kwargs={"train_test_or_eval":
|
82 |
),
|
83 |
datasets.SplitGenerator(
|
84 |
name=datasets.Split.TRAIN,
|
85 |
# These kwargs will be passed to _generate_examples
|
86 |
-
gen_kwargs={"train_test_or_eval":
|
87 |
),
|
88 |
datasets.SplitGenerator(
|
89 |
name=datasets.Split.VALIDATION,
|
90 |
# These kwargs will be passed to _generate_examples
|
91 |
-
gen_kwargs={"train_test_or_eval":
|
92 |
),
|
93 |
]
|
94 |
|
95 |
-
def _generate_examples(self, train_test_or_eval):
|
96 |
"""Yields examples."""
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
with open(file, encoding="utf-8") as f:
|
101 |
-
data = json.load(f)
|
102 |
questions = data["questions"]
|
103 |
answers = data["answers"]
|
104 |
options = data["options"]
|
|
|
2 |
|
3 |
|
4 |
import json
|
|
|
|
|
5 |
|
6 |
import datasets
|
7 |
|
|
|
68 |
"""Returns SplitGenerators."""
|
69 |
# Downloads the data and defines the splits
|
70 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
71 |
+
archive = dl_manager.download(_URL)
|
72 |
case = str(self.config.name)
|
73 |
if case == "all":
|
74 |
case = ""
|
|
|
76 |
datasets.SplitGenerator(
|
77 |
name=datasets.Split.TEST,
|
78 |
# These kwargs will be passed to _generate_examples
|
79 |
+
gen_kwargs={"train_test_or_eval": f"RACE/test/{case}", "files": dl_manager.iter_archive(archive)},
|
80 |
),
|
81 |
datasets.SplitGenerator(
|
82 |
name=datasets.Split.TRAIN,
|
83 |
# These kwargs will be passed to _generate_examples
|
84 |
+
gen_kwargs={"train_test_or_eval": f"RACE/train/{case}", "files": dl_manager.iter_archive(archive)},
|
85 |
),
|
86 |
datasets.SplitGenerator(
|
87 |
name=datasets.Split.VALIDATION,
|
88 |
# These kwargs will be passed to _generate_examples
|
89 |
+
gen_kwargs={"train_test_or_eval": f"RACE/dev/{case}", "files": dl_manager.iter_archive(archive)},
|
90 |
),
|
91 |
]
|
92 |
|
93 |
+
def _generate_examples(self, train_test_or_eval, files):
|
94 |
"""Yields examples."""
|
95 |
+
for file_idx, (path, f) in enumerate(files):
|
96 |
+
if path.startswith(train_test_or_eval) and path.endswith(".txt"):
|
97 |
+
data = json.loads(f.read().decode("utf-8"))
|
|
|
|
|
98 |
questions = data["questions"]
|
99 |
answers = data["answers"]
|
100 |
options = data["options"]
|