Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
456a3ff
·
1 Parent(s): e6812eb

Update files from the datasets library (from 1.16.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.16.0

Files changed (2) hide show
  1. README.md +1 -0
  2. race.py +8 -12
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  languages:
3
  - en
4
  paperswithcode_id: race
 
1
  ---
2
+ pretty_name: RACE
3
  languages:
4
  - en
5
  paperswithcode_id: race
race.py CHANGED
@@ -2,8 +2,6 @@
2
 
3
 
4
  import json
5
- import os
6
- from pathlib import Path
7
 
8
  import datasets
9
 
@@ -70,7 +68,7 @@ class Race(datasets.GeneratorBasedBuilder):
70
  """Returns SplitGenerators."""
71
  # Downloads the data and defines the splits
72
  # dl_manager is a datasets.download.DownloadManager that can be used to
73
- dl_dir = dl_manager.download_and_extract(_URL)
74
  case = str(self.config.name)
75
  if case == "all":
76
  case = ""
@@ -78,27 +76,25 @@ class Race(datasets.GeneratorBasedBuilder):
78
  datasets.SplitGenerator(
79
  name=datasets.Split.TEST,
80
  # These kwargs will be passed to _generate_examples
81
- gen_kwargs={"train_test_or_eval": os.path.join(dl_dir, f"RACE/test/{case}")},
82
  ),
83
  datasets.SplitGenerator(
84
  name=datasets.Split.TRAIN,
85
  # These kwargs will be passed to _generate_examples
86
- gen_kwargs={"train_test_or_eval": os.path.join(dl_dir, f"RACE/train/{case}")},
87
  ),
88
  datasets.SplitGenerator(
89
  name=datasets.Split.VALIDATION,
90
  # These kwargs will be passed to _generate_examples
91
- gen_kwargs={"train_test_or_eval": os.path.join(dl_dir, f"RACE/dev/{case}")},
92
  ),
93
  ]
94
 
95
- def _generate_examples(self, train_test_or_eval):
96
  """Yields examples."""
97
- current_path = Path(train_test_or_eval)
98
- files_in_dir = [str(f.absolute()) for f in sorted(current_path.glob("**/*.txt"))]
99
- for file_idx, file in enumerate(sorted(files_in_dir)):
100
- with open(file, encoding="utf-8") as f:
101
- data = json.load(f)
102
  questions = data["questions"]
103
  answers = data["answers"]
104
  options = data["options"]
 
2
 
3
 
4
  import json
 
 
5
 
6
  import datasets
7
 
 
68
  """Returns SplitGenerators."""
69
  # Downloads the data and defines the splits
70
  # dl_manager is a datasets.download.DownloadManager that can be used to
71
+ archive = dl_manager.download(_URL)
72
  case = str(self.config.name)
73
  if case == "all":
74
  case = ""
 
76
  datasets.SplitGenerator(
77
  name=datasets.Split.TEST,
78
  # These kwargs will be passed to _generate_examples
79
+ gen_kwargs={"train_test_or_eval": f"RACE/test/{case}", "files": dl_manager.iter_archive(archive)},
80
  ),
81
  datasets.SplitGenerator(
82
  name=datasets.Split.TRAIN,
83
  # These kwargs will be passed to _generate_examples
84
+ gen_kwargs={"train_test_or_eval": f"RACE/train/{case}", "files": dl_manager.iter_archive(archive)},
85
  ),
86
  datasets.SplitGenerator(
87
  name=datasets.Split.VALIDATION,
88
  # These kwargs will be passed to _generate_examples
89
+ gen_kwargs={"train_test_or_eval": f"RACE/dev/{case}", "files": dl_manager.iter_archive(archive)},
90
  ),
91
  ]
92
 
93
+ def _generate_examples(self, train_test_or_eval, files):
94
  """Yields examples."""
95
+ for file_idx, (path, f) in enumerate(files):
96
+ if path.startswith(train_test_or_eval) and path.endswith(".txt"):
97
+ data = json.loads(f.read().decode("utf-8"))
 
 
98
  questions = data["questions"]
99
  answers = data["answers"]
100
  options = data["options"]