--- license: cc-by-nc-nd-4.0 task_categories: - image-to-image --- `xvr-data` contains DICOM/NIfTI versions of the `DeepFluoro` and `Ljubljana` datasets. Paper: [Rapid patient-specific neural networks for intraoperative X-ray to volume registration](https://huggingface.co/papers/2503.16309) Code: https://github.com/eigenvivek/xvr ## Citation If you use either of these datasets, please cite the original papers. ```bibtex @article{grupp2020automatic, title={Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration}, author={Grupp, Robert B and Unberath, Mathias and Gao, Cong and Hegeman, Rachel A and Murphy, Ryan J and Alexander, Clayton P and Otake, Yoshito and McArthur, Benjamin A and Armand, Mehran and Taylor, Russell H}, journal={International journal of computer assisted radiology and surgery}, volume={15}, pages={759--769}, year={2020}, publisher={Springer} } @article{pernus20133d, title={3D-2D registration of cerebral angiograms: A method and evaluation on clinical images}, author={Mitrović, Uros˘ and S˘piclin, Z˘iga and Likar, Bos˘tjan and Pernus˘, Franjo}, journal={IEEE transactions on medical imaging}, volume={32}, number={8}, pages={1550--1563}, year={2013}, publisher={IEEE} } ```