Datasets:
Edward J. Schwartz
commited on
Commit
·
b2537df
1
Parent(s):
f35dde1
Update repo
Browse files- scripts/data.ipynb +215 -0
- scripts/gen-training.py +0 -3
scripts/data.ipynb
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"application/vnd.jupyter.widget-view+json": {
|
11 |
+
"model_id": "564cb208df3e42778a1f988e0e077eee",
|
12 |
+
"version_major": 2,
|
13 |
+
"version_minor": 0
|
14 |
+
},
|
15 |
+
"text/plain": [
|
16 |
+
"Downloading: 0%| | 0.00/938 [00:00<?, ?B/s]"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
"metadata": {},
|
20 |
+
"output_type": "display_data"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"name": "stderr",
|
24 |
+
"output_type": "stream",
|
25 |
+
"text": [
|
26 |
+
"Using custom data configuration ejschwartz--oo-method-test-new-8eaca399917e96f5\n"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "stdout",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"Downloading and preparing dataset csv/default (download: 21.72 MiB, generated: 85.52 MiB, post-processed: Unknown size, total: 107.25 MiB) to /home/eschwartz/.cache/huggingface/datasets/ejschwartz___parquet/ejschwartz--oo-method-test-new-8eaca399917e96f5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...\n"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"data": {
|
38 |
+
"application/vnd.jupyter.widget-view+json": {
|
39 |
+
"model_id": "bb25d525ffb343779353edc479da48c6",
|
40 |
+
"version_major": 2,
|
41 |
+
"version_minor": 0
|
42 |
+
},
|
43 |
+
"text/plain": [
|
44 |
+
"Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
"metadata": {},
|
48 |
+
"output_type": "display_data"
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"data": {
|
52 |
+
"application/vnd.jupyter.widget-view+json": {
|
53 |
+
"model_id": "208fc0a559044aab99013e47a81515ad",
|
54 |
+
"version_major": 2,
|
55 |
+
"version_minor": 0
|
56 |
+
},
|
57 |
+
"text/plain": [
|
58 |
+
"Downloading data: 0%| | 0.00/22.8M [00:00<?, ?B/s]"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
"metadata": {},
|
62 |
+
"output_type": "display_data"
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"data": {
|
66 |
+
"application/vnd.jupyter.widget-view+json": {
|
67 |
+
"model_id": "19dbc119d6654a21b262770049848aae",
|
68 |
+
"version_major": 2,
|
69 |
+
"version_minor": 0
|
70 |
+
},
|
71 |
+
"text/plain": [
|
72 |
+
"Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
"metadata": {},
|
76 |
+
"output_type": "display_data"
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"data": {
|
80 |
+
"application/vnd.jupyter.widget-view+json": {
|
81 |
+
"model_id": "7b9ac6103de94be39157b3de21b49a3f",
|
82 |
+
"version_major": 2,
|
83 |
+
"version_minor": 0
|
84 |
+
},
|
85 |
+
"text/plain": [
|
86 |
+
"0 tables [00:00, ? tables/s]"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
"metadata": {},
|
90 |
+
"output_type": "display_data"
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"name": "stdout",
|
94 |
+
"output_type": "stream",
|
95 |
+
"text": [
|
96 |
+
"Dataset parquet downloaded and prepared to /home/eschwartz/.cache/huggingface/datasets/ejschwartz___parquet/ejschwartz--oo-method-test-new-8eaca399917e96f5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.\n"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"data": {
|
101 |
+
"application/vnd.jupyter.widget-view+json": {
|
102 |
+
"model_id": "f2ab6ee941a24055aa309f89d1cace8d",
|
103 |
+
"version_major": 2,
|
104 |
+
"version_minor": 0
|
105 |
+
},
|
106 |
+
"text/plain": [
|
107 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
"metadata": {},
|
111 |
+
"output_type": "display_data"
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"source": [
|
115 |
+
"import datasets\n",
|
116 |
+
"ds = datasets.load_dataset(\"ejschwartz/oo-method-test-new\")"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "code",
|
121 |
+
"execution_count": 7,
|
122 |
+
"metadata": {},
|
123 |
+
"outputs": [
|
124 |
+
{
|
125 |
+
"name": "stderr",
|
126 |
+
"output_type": "stream",
|
127 |
+
"text": [
|
128 |
+
"Loading cached processed dataset at /home/eschwartz/.cache/huggingface/datasets/ejschwartz___parquet/ejschwartz--oo-method-test-new-8eaca399917e96f5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec/cache-2cacd54c29fd0da4.arrow\n",
|
129 |
+
"Loading cached processed dataset at /home/eschwartz/.cache/huggingface/datasets/ejschwartz___parquet/ejschwartz--oo-method-test-new-8eaca399917e96f5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec/cache-aae4742ba8c97557.arrow\n",
|
130 |
+
"Loading cached processed dataset at /home/eschwartz/.cache/huggingface/datasets/ejschwartz___parquet/ejschwartz--oo-method-test-new-8eaca399917e96f5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec/cache-65c638a5756f05c5.arrow\n",
|
131 |
+
"Loading cached processed dataset at /home/eschwartz/.cache/huggingface/datasets/ejschwartz___parquet/ejschwartz--oo-method-test-new-8eaca399917e96f5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec/cache-e13e1e6cd866ea19.arrow\n",
|
132 |
+
"Loading cached processed dataset at /home/eschwartz/.cache/huggingface/datasets/ejschwartz___parquet/ejschwartz--oo-method-test-new-8eaca399917e96f5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec/cache-8a6bb80fc2a77a30.arrow\n"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"data": {
|
137 |
+
"application/vnd.jupyter.widget-view+json": {
|
138 |
+
"model_id": "e7a6a640d0214fec87091e84af1abed9",
|
139 |
+
"version_major": 2,
|
140 |
+
"version_minor": 0
|
141 |
+
},
|
142 |
+
"text/plain": [
|
143 |
+
" 0%| | 0/84 [00:00<?, ?ba/s]"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
"metadata": {},
|
147 |
+
"output_type": "display_data"
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"data": {
|
151 |
+
"application/vnd.jupyter.widget-view+json": {
|
152 |
+
"model_id": "bc64279aa0ee488f8d7e22b472524093",
|
153 |
+
"version_major": 2,
|
154 |
+
"version_minor": 0
|
155 |
+
},
|
156 |
+
"text/plain": [
|
157 |
+
" 0%| | 0/84 [00:00<?, ?ba/s]"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
"metadata": {},
|
161 |
+
"output_type": "display_data"
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"name": "stderr",
|
165 |
+
"output_type": "stream",
|
166 |
+
"text": [
|
167 |
+
"Loading cached processed dataset at /home/eschwartz/.cache/huggingface/datasets/ejschwartz___parquet/ejschwartz--oo-method-test-new-8eaca399917e96f5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec/cache-5dd37e108f928473.arrow\n"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"data": {
|
172 |
+
"text/plain": [
|
173 |
+
"{'2008': 27454,\n",
|
174 |
+
" '2010': 3691,\n",
|
175 |
+
" '2012': 5590,\n",
|
176 |
+
" '2013': 5908,\n",
|
177 |
+
" '2015': 9719,\n",
|
178 |
+
" '2017': 9919,\n",
|
179 |
+
" '2019': 10534,\n",
|
180 |
+
" '2023': 0}"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
"execution_count": 7,
|
184 |
+
"metadata": {},
|
185 |
+
"output_type": "execute_result"
|
186 |
+
}
|
187 |
+
],
|
188 |
+
"source": [
|
189 |
+
"{year: len(ds.filter(lambda r: year in r[\"Binary\"])['combined']) for year in [\"2008\", \"2010\", \"2012\", \"2013\", \"2015\", \"2017\", \"2019\", \"2022\"]}"
|
190 |
+
]
|
191 |
+
}
|
192 |
+
],
|
193 |
+
"metadata": {
|
194 |
+
"kernelspec": {
|
195 |
+
"display_name": "Python 3",
|
196 |
+
"language": "python",
|
197 |
+
"name": "python3"
|
198 |
+
},
|
199 |
+
"language_info": {
|
200 |
+
"codemirror_mode": {
|
201 |
+
"name": "ipython",
|
202 |
+
"version": 3
|
203 |
+
},
|
204 |
+
"file_extension": ".py",
|
205 |
+
"mimetype": "text/x-python",
|
206 |
+
"name": "python",
|
207 |
+
"nbconvert_exporter": "python",
|
208 |
+
"pygments_lexer": "ipython3",
|
209 |
+
"version": "3.6.8"
|
210 |
+
},
|
211 |
+
"orig_nbformat": 4
|
212 |
+
},
|
213 |
+
"nbformat": 4,
|
214 |
+
"nbformat_minor": 2
|
215 |
+
}
|
scripts/gen-training.py
CHANGED
@@ -103,9 +103,6 @@ for addr, typ, name in parsed_data:
|
|
103 |
|
104 |
df = df.append({'Binary': bname, 'Addr': addr, 'Name': name, 'Type': typ, 'Disassembly': dis}, ignore_index=True)
|
105 |
|
106 |
-
if False:
|
107 |
-
df.to_csv(oname, index=False)
|
108 |
-
|
109 |
df.to_csv(oname, index=False)
|
110 |
|
111 |
#with open(jname, "w") as f:
|
|
|
103 |
|
104 |
df = df.append({'Binary': bname, 'Addr': addr, 'Name': name, 'Type': typ, 'Disassembly': dis}, ignore_index=True)
|
105 |
|
|
|
|
|
|
|
106 |
df.to_csv(oname, index=False)
|
107 |
|
108 |
#with open(jname, "w") as f:
|