File size: 9,125 Bytes
8a2d3e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd70a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2d3e4
7fd70a4
8a2d3e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e2638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2d3e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245ce3b
16ad7e1
8a2d3e4
52f6479
 
 
f6e2638
52f6479
 
 
 
 
 
 
245ce3b
 
25ee654
 
245ce3b
 
25ee654
 
 
 
 
 
 
245ce3b
52f6479
 
 
 
f6e2638
8a2d3e4
 
 
 
 
 
f6e2638
8a2d3e4
 
52f6479
 
 
f6e2638
52f6479
 
f6e2638
52f6479
 
 
 
 
 
 
f6e2638
52f6479
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
import datasets


_DESCRIPTION = """\
A dataset of Legal Documents from German federal court decisions for Named Entity Recognition. The dataset is human-annotated with 19 fine-grained entity classes. The dataset consists of approx. 67,000 sentences and contains 54,000 annotated entities.
"""

_HOMEPAGE_URL = "https://github.com/elenanereiss/Legal-Entity-Recognition"
_CITATION = """\
@misc{https://doi.org/10.48550/arxiv.2003.13016,
  doi = {10.48550/ARXIV.2003.13016},
  
  url = {https://arxiv.org/abs/2003.13016},
  
  author = {Leitner, Elena and Rehm, Georg and Moreno-Schneider, Julián},
  
  keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {A Dataset of German Legal Documents for Named Entity Recognition},
  
  publisher = {arXiv},
  
  year = {2020},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}

"""
_URL = {
    "train": "https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/ler_train.conll",
    "dev": "https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/ler_dev.conll",  
    "test": "https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/ler_test.conll",
}
_VERSION = "1.0.0"


class German_LER(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version(_VERSION)

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-AN",
                                "B-EUN",
                                "B-GRT",
                                "B-GS",
                                "B-INN",
                                "B-LD",
                                "B-LDS",
                                "B-LIT",
                                "B-MRK",
                                "B-ORG",
                                "B-PER",
                                "B-RR",
                                "B-RS",
                                "B-ST",
                                "B-STR",
                                "B-UN",
                                "B-VO",
                                "B-VS",
                                "B-VT",
                                "I-AN",
                                "I-EUN",
                                "I-GRT",
                                "I-GS",
                                "I-INN",
                                "I-LD",
                                "I-LDS",
                                "I-LIT",
                                "I-MRK",
                                "I-ORG",
                                "I-PER",
                                "I-RR",
                                "I-RS",
                                "I-ST",
                                "I-STR",
                                "I-UN",
                                "I-VO",
                                "I-VS",
                                "I-VT",
                                "O",
                            ]
                        )
                    ),
                    "ner_coarse_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-LIT",
                                "B-LOC",
                                "B-NRM",
                                "B-ORG",
                                "B-PER",
                                "B-REG",
                                "B-RS",
                                "I-LIT",
                                "I-LOC",
                                "I-NRM",
                                "I-ORG",
                                "I-PER",
                                "I-REG",
                                "I-RS",
                                "O",
                            ]
                        )
                    ),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )


    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        data_dir = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"datapath": data_dir["train"], "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"datapath": data_dir["test"], "split": "test"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"datapath": data_dir["dev"], "split": "dev"},
            ),
        ]
                                    
    def _generate_examples(self, datapath, split):
        sentence_counter = 0
        with open(datapath, encoding="utf-8") as f:
            current_words = []
            current_labels = []
            current_coarse_labels = []
            for row in f:
                row = row.rstrip()
                row_split = row.split()
                if len(row_split) == 2:
                    token, label = row_split
                    current_words.append(token)
                    current_labels.append(label)
                    
                    # generate coarse-grained tags
                    new_label = ""
                    if label == 'O': new_label = label
                    else:
                        bio, fine_tag = label.split("-")
                        if fine_tag  in ['PER', 'RR', 'AN']: new_label = bio + '-PER'
                        elif fine_tag  in ['LD', 'ST', 'STR', 'LDS']: new_label = bio + '-LOC'
                        elif fine_tag  in ['ORG', 'UN', 'INN', 'GRT', 'MRK']: new_label = bio + '-ORG'
                        elif fine_tag  in ['GS', 'VO', 'EUN']: new_label = bio + '-NRM'
                        elif fine_tag  in ['VS', 'VT']: new_label = bio + '-REG'
                        else: new_label = label
                    current_coarse_labels.append(new_label)
                    
                else:
                    if not current_words:
                        continue
                    assert len(current_words) == len(current_labels), "word len doesnt match label length"
                    assert len(current_words) == len(current_coarse_labels), "word len doesnt match coarse label length"
                    sentence = (
                        sentence_counter,
                        {
                            "id": str(sentence_counter),
                            "tokens": current_words,
                            "ner_tags": current_labels,
                            "ner_coarse_tags": current_coarse_labels,
                        },
                    )
                    sentence_counter += 1
                    current_words = []
                    current_labels = []
                    current_coarse_labels = []
                    yield sentence

            # last sentence
            if current_words:
                sentence = (
                    sentence_counter,
                    {
                        "id": str(sentence_counter),
                        "tokens": current_words,
                        "ner_tags": current_labels,
                        "ner_coarse_tags": current_coarse_labels,
                    },
                )
                yield sentence