Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
German
Size:
1M<n<10M
ArXiv:
DOI:
License:
elenanereiss
commited on
Commit
·
4a15be1
1
Parent(s):
151284d
Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ multilinguality:
|
|
12 |
paperswithcode_id: dataset-of-legal-documents
|
13 |
pretty_name: German Named Entity Recognition in Legal Documents
|
14 |
size_categories:
|
15 |
-
-
|
16 |
source_datasets:
|
17 |
- original
|
18 |
task_categories:
|
@@ -69,35 +69,73 @@ For more details see [https://arxiv.org/pdf/2003.13016v1.pdf](https://arxiv.org/
|
|
69 |
German
|
70 |
|
71 |
## Dataset Structure
|
72 |
-
|
73 |
### Data Instances
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
### Data Fields
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
### Data Splits
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
num_rows: 53384
|
90 |
-
})
|
91 |
-
test: Dataset({
|
92 |
-
features: ['id', 'tokens', 'ner_tags'],
|
93 |
-
num_rows: 6673
|
94 |
-
})
|
95 |
-
validation: Dataset({
|
96 |
-
features: ['id', 'tokens', 'ner_tags'],
|
97 |
-
num_rows: 6666
|
98 |
-
})
|
99 |
-
})
|
100 |
-
```
|
101 |
|
102 |
<!--
|
103 |
|
@@ -182,26 +220,4 @@ For more details see [https://github.com/elenanereiss/Legal-Entity-Recognition/b
|
|
182 |
}
|
183 |
```
|
184 |
|
185 |
-
```
|
186 |
-
@inproceedings{leitner2019fine,
|
187 |
-
author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},
|
188 |
-
title = {{Fine-grained Named Entity Recognition in Legal Documents}},
|
189 |
-
booktitle = {Semantic Systems. The Power of AI and Knowledge
|
190 |
-
Graphs. Proceedings of the 15th International Conference
|
191 |
-
(SEMANTiCS 2019)},
|
192 |
-
year = 2019,
|
193 |
-
editor = {Maribel Acosta and Philippe Cudré-Mauroux and Maria
|
194 |
-
Maleshkova and Tassilo Pellegrini and Harald Sack and York
|
195 |
-
Sure-Vetter},
|
196 |
-
keywords = {aip},
|
197 |
-
publisher = {Springer},
|
198 |
-
series = {Lecture Notes in Computer Science},
|
199 |
-
number = {11702},
|
200 |
-
address = {Karlsruhe, Germany},
|
201 |
-
month = 9,
|
202 |
-
note = {10/11 September 2019},
|
203 |
-
pages = {272--287},
|
204 |
-
pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}}
|
205 |
-
```
|
206 |
-
|
207 |
### Contributions
|
|
|
12 |
paperswithcode_id: dataset-of-legal-documents
|
13 |
pretty_name: German Named Entity Recognition in Legal Documents
|
14 |
size_categories:
|
15 |
+
- 2M
|
16 |
source_datasets:
|
17 |
- original
|
18 |
task_categories:
|
|
|
69 |
German
|
70 |
|
71 |
## Dataset Structure
|
|
|
72 |
### Data Instances
|
73 |
+
```
|
74 |
+
{
|
75 |
+
'id': '1',
|
76 |
+
'tokens': ['Eine', 'solchermaßen', 'verzögerte', 'oder', 'bewusst', 'eingesetzte', 'Verkettung', 'sachgrundloser', 'Befristungen', 'schließt', '§', '14', 'Abs.', '2', 'Satz', '2', 'TzBfG', 'aus', '.'],
|
77 |
+
'ner_tags': [38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 3, 22, 22, 22, 22, 22, 22, 38, 38]
|
78 |
+
}
|
79 |
+
```
|
80 |
### Data Fields
|
81 |
|
82 |
+
```
|
83 |
+
{
|
84 |
+
'id': Value(dtype='string', id=None),
|
85 |
+
'tokens': Sequence(feature=Value(dtype='string', id=None),
|
86 |
+
length=-1, id=None),
|
87 |
+
'ner_tags': Sequence(feature=ClassLabel(num_classes=39,
|
88 |
+
names=['B-AN',
|
89 |
+
'B-EUN',
|
90 |
+
'B-GRT',
|
91 |
+
'B-GS',
|
92 |
+
'B-INN',
|
93 |
+
'B-LD',
|
94 |
+
'B-LDS',
|
95 |
+
'B-LIT',
|
96 |
+
'B-MRK',
|
97 |
+
'B-ORG',
|
98 |
+
'B-PER',
|
99 |
+
'B-RR',
|
100 |
+
'B-RS',
|
101 |
+
'B-ST',
|
102 |
+
'B-STR',
|
103 |
+
'B-UN',
|
104 |
+
'B-VO',
|
105 |
+
'B-VS',
|
106 |
+
'B-VT',
|
107 |
+
'I-AN',
|
108 |
+
'I-EUN',
|
109 |
+
'I-GRT',
|
110 |
+
'I-GS',
|
111 |
+
'I-INN',
|
112 |
+
'I-LD',
|
113 |
+
'I-LDS',
|
114 |
+
'I-LIT',
|
115 |
+
'I-MRK',
|
116 |
+
'I-ORG',
|
117 |
+
'I-PER',
|
118 |
+
'I-RR',
|
119 |
+
'I-RS',
|
120 |
+
'I-ST',
|
121 |
+
'I-STR',
|
122 |
+
'I-UN',
|
123 |
+
'I-VO',
|
124 |
+
'I-VS',
|
125 |
+
'I-VT',
|
126 |
+
'O'],
|
127 |
+
id=None),
|
128 |
+
length=-1,
|
129 |
+
id=None)
|
130 |
+
}
|
131 |
+
```
|
132 |
|
133 |
### Data Splits
|
134 |
|
135 |
+
| | train | validation | test |
|
136 |
+
|-------------------------|------:|-----------:|-----:|
|
137 |
+
| Input Sentences | 53384 | 6666 | 6673 |
|
138 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
<!--
|
141 |
|
|
|
220 |
}
|
221 |
```
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
### Contributions
|