elenanereiss commited on
Commit
f326333
·
1 Parent(s): 8a2d3e4

Delete german_ler.py

Browse files
Files changed (1) hide show
  1. german_ler.py +0 -185
german_ler.py DELETED
@@ -1,185 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- import datasets
18
-
19
-
20
- _DESCRIPTION = """\
21
- A dataset of Legal Documents from German federal court decisions for Named Entity Recognition. The dataset is human-annotated with 19 fine-grained entity classes. The dataset consists of approx. 67,000 sentences and contains 54,000 annotated entities.
22
- """
23
-
24
- _HOMEPAGE_URL = "https://github.com/elenanereiss/Legal-Entity-Recognition"
25
- _CITATION = """\
26
- @inproceedings{leitner2019fine,
27
- author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},
28
- title = {{Fine-grained Named Entity Recognition in Legal Documents}},
29
- booktitle = {Semantic Systems. The Power of AI and Knowledge
30
- Graphs. Proceedings of the 15th International Conference
31
- (SEMANTiCS 2019)},
32
- year = 2019,
33
- editor = {Maribel Acosta and Philippe Cudré-Mauroux and Maria
34
- Maleshkova and Tassilo Pellegrini and Harald Sack and York
35
- Sure-Vetter},
36
- keywords = {aip},
37
- publisher = {Springer},
38
- series = {Lecture Notes in Computer Science},
39
- number = {11702},
40
- address = {Karlsruhe, Germany},
41
- month = 9,
42
- note = {10/11 September 2019},
43
- pages = {272--287},
44
- pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}
45
- }
46
- """
47
- _URL = {
48
- "train": "https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/ler_train.conll",
49
- "dev": "https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/ler_dev.conll",
50
- "test": "https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/ler_test.conll",
51
- }
52
- _VERSION = "1.0.0"
53
-
54
-
55
- class German_LER(datasets.GeneratorBasedBuilder):
56
- VERSION = datasets.Version(_VERSION)
57
-
58
- def _info(self):
59
- return datasets.DatasetInfo(
60
- description=_DESCRIPTION,
61
- features=datasets.Features(
62
- {
63
- "id": datasets.Value("string"),
64
- "tokens": datasets.Sequence(datasets.Value("string")),
65
- "ner_tags": datasets.Sequence(
66
- datasets.features.ClassLabel(
67
- names=[
68
- "B-AN",
69
- "B-EUN",
70
- "B-GRT",
71
- "B-GS",
72
- "B-INN",
73
- "B-LD",
74
- "B-LDS",
75
- "B-LIT",
76
- "B-MRK",
77
- "B-ORG",
78
- "B-PER",
79
- "B-RR",
80
- "B-RS",
81
- "B-ST",
82
- "B-STR",
83
- "B-UN",
84
- "B-VO",
85
- "B-VS",
86
- "B-VT",
87
- "I-AN",
88
- "I-EUN",
89
- "I-GRT",
90
- "I-GS",
91
- "I-INN",
92
- "I-LD",
93
- "I-LDS",
94
- "I-LIT",
95
- "I-MRK",
96
- "I-ORG",
97
- "I-PER",
98
- "I-RR",
99
- "I-RS",
100
- "I-ST",
101
- "I-STR",
102
- "I-UN",
103
- "I-VO",
104
- "I-VS",
105
- "I-VT",
106
- "O",
107
- ]
108
- )
109
- ),
110
- },
111
- ),
112
- supervised_keys=None,
113
- homepage=_HOMEPAGE_URL,
114
- citation=_CITATION,
115
- )
116
-
117
-
118
- def _split_generators(self, dl_manager):
119
- """Returns SplitGenerators."""
120
-
121
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
122
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
123
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
124
- data_dir = dl_manager.download_and_extract(_URL)
125
- return [
126
- datasets.SplitGenerator(
127
- name=datasets.Split.TRAIN,
128
- # These kwargs will be passed to _generate_examples
129
- gen_kwargs={"datapath": data_dir["train"], "split": "train"},
130
- ),
131
- datasets.SplitGenerator(
132
- name=datasets.Split.TEST,
133
- # These kwargs will be passed to _generate_examples
134
- gen_kwargs={"datapath": data_dir["test"], "split": "test"},
135
- ),
136
- datasets.SplitGenerator(
137
- name=datasets.Split.VALIDATION,
138
- # These kwargs will be passed to _generate_examples
139
- gen_kwargs={"datapath": data_dir["dev"], "split": "dev"},
140
- ),
141
- ]
142
-
143
-
144
- def _generate_examples(self, datapath):
145
- sentence_counter = 0
146
- for filepath in self.config.filepaths:
147
- filepath = os.path.join(datapath, filepath)
148
- with open(filepath, encoding="utf-8") as f:
149
- current_words = []
150
- current_labels = []
151
- for row in f:
152
- row = row.rstrip()
153
- row_split = row.split()
154
- if len(row_split) == 2:
155
- token, label = row_split
156
- current_words.append(token)
157
- current_labels.append(label)
158
- else:
159
- if not current_words:
160
- continue
161
- assert len(current_words) == len(current_labels), "word len doesnt match label length"
162
- sentence = (
163
- sentence_counter,
164
- {
165
- "id": str(sentence_counter),
166
- "tokens": current_words,
167
- "ner_tags": current_labels,
168
- },
169
- )
170
- sentence_counter += 1
171
- current_words = []
172
- current_labels = []
173
- yield sentence
174
-
175
- # if something remains:
176
- if current_words:
177
- sentence = (
178
- sentence_counter,
179
- {
180
- "id": str(sentence_counter),
181
- "tokens": current_words,
182
- "ner_tags": current_labels,
183
- },
184
- )
185
- yield sentence