--- annotations_creators: - expert-generated language_creators: - found language: - de license: - cc-by-4.0 multilinguality: - monolingual paperswithcode_id: dataset-of-legal-documents pretty_name: German Named Entity Recognition in Legal Documents size_categories: - 2M source_datasets: - original task_categories: - token-classification task_ids: - named-entity-recognition --- # Dataset Card for "German LER" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://github.com/elenanereiss/Legal-Entity-Recognition](https://github.com/elenanereiss/Legal-Entity-Recognition) - **Paper:** [https://arxiv.org/pdf/2003.13016v1.pdf](https://arxiv.org/pdf/2003.13016v1.pdf) - **Point of Contact:** [elena.leitner@dfki.de](elena.leitner@dfki.de) ### Dataset Summary A dataset of Legal Documents from German federal court decisions for Named Entity Recognition. The dataset is human-annotated with 19 fine-grained entity classes. The dataset consists of approx. 67,000 sentences and contains 54,000 annotated entities. NER tags use the `BIO` tagging scheme. For more details see [https://arxiv.org/pdf/2003.13016v1.pdf](https://arxiv.org/pdf/2003.13016v1.pdf). ### Supported Tasks and Leaderboards - **Tasks:** Named Entity Recognition - **Leaderboards:** ### Languages German ## Dataset Structure ### Data Instances ``` { 'id': '1', 'tokens': ['Eine', 'solchermaßen', 'verzögerte', 'oder', 'bewusst', 'eingesetzte', 'Verkettung', 'sachgrundloser', 'Befristungen', 'schließt', '§', '14', 'Abs.', '2', 'Satz', '2', 'TzBfG', 'aus', '.'], 'ner_tags': [38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 3, 22, 22, 22, 22, 22, 22, 38, 38] } ``` ### Data Fields ``` { 'id': Value(dtype='string', id=None), 'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'ner_tags': Sequence(feature=ClassLabel(num_classes=39, names=['B-AN', 'B-EUN', 'B-GRT', 'B-GS', 'B-INN', 'B-LD', 'B-LDS', 'B-LIT', 'B-MRK', 'B-ORG', 'B-PER', 'B-RR', 'B-RS', 'B-ST', 'B-STR', 'B-UN', 'B-VO', 'B-VS', 'B-VT', 'I-AN', 'I-EUN', 'I-GRT', 'I-GS', 'I-INN', 'I-LD', 'I-LDS', 'I-LIT', 'I-MRK', 'I-ORG', 'I-PER', 'I-RR', 'I-RS', 'I-ST', 'I-STR', 'I-UN', 'I-VO', 'I-VS', 'I-VT', 'O'], id=None), length=-1, id=None) } ``` ### Data Splits | | train | validation | test | |-------------------------|------:|-----------:|-----:| | Input Sentences | 53384 | 6666 | 6673 | ### Source Data Court decisions from 2017 and 2018 were selected for the dataset, published online by the [Federal Ministry of Justice and Consumer Protection](http://www.rechtsprechung-im-internet.de). The documents originate from seven federal courts: Federal Labour Court (BAG), Federal Fiscal Court (BFH), Federal Court of Justice (BGH), Federal Patent Court (BPatG), Federal Social Court (BSG), Federal Constitutional Court (BVerfG) and Federal Administrative Court (BVerwG). ### Annotations For more details see [https://github.com/elenanereiss/Legal-Entity-Recognition/blob/master/docs/Annotationsrichtlinien.pdf](https://github.com/elenanereiss/Legal-Entity-Recognition/blob/master/docs/Annotationsrichtlinien.pdf). ### Licensing Information [CC BY-SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/) ### Citation Information ``` @misc{https://doi.org/10.48550/arxiv.2003.13016, doi = {10.48550/ARXIV.2003.13016}, url = {https://arxiv.org/abs/2003.13016}, author = {Leitner, Elena and Rehm, Georg and Moreno-Schneider, Julián}, keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {A Dataset of German Legal Documents for Named Entity Recognition}, publisher = {arXiv}, year = {2020}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ### Contributions